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Abstract
Background: Bayesian adaptive designs have the potential to change the way clinical research is conducted. These novel study designs can answer the same questions 
as traditional efficacy trials but with potential advantages in terms of flexibility and efficiency. The Bayesian adaptive drop-the-loser (DTL) design is particularly 
applicable in trials where there are uncertainties regarding which treatment/dose level to test further. 

Aims: This paper describes steps taken in planning an ongoing DTL randomized clinical trial of citalopram for the treatment of cocaine use disorder, including the 
design rationale, simulation study, and pruning criteria. 

Method and results: Participants of this single site, double-blind, randomized controlled trial are assigned to either citalopram 20 mg/day, 40 mg/day, or placebo for 
9 weeks. The primary outcome measure is longest duration of abstinence (LDA) based on urine drug screens. A planned interim analysis at 50% of data gathering will 
drop or “prune” the active medication group that is performing least well, based on pre-specified decision rules. Bayesian simulation results show that this adaptive 
design allocates more subjects to the ‘best efficacy’ dose condition with satisfactory power and Type I error rates. 

Discussion: Employing the proposed DTL design is likely to yield the same conclusions as the classical fixed (non-adaptive) design, but with greater statistical 
precision for estimating treatment effects. We discuss advantages of DTL for speeding up efforts underway to identify and test new medications to treat cocaine 
dependence. We also discuss logistical considerations and lessons learned from designing and implementing this trial.
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Introduction
Cocaine use disorder (CUD) is a difficult to treat medical and 

public health problem. Research on the development of effective 
treatment medications has been a high priority but has not resulted in 
high success rates. Randomized clinical trials have evaluated over 60 
medications, however none have FDA-approval for the treatment of 
cocaine dependence, leaving the field in need of more efficient ways to 
move forward with the most promising candidate drugs and doses [1]. 
Adaptive trial designs have accelerated the drug development process 
for lung cancer, breast cancer, stroke, and diabetes [2-5] and could 
potentially do the same for the drug dependence field. We developed 
a drop-the-loser (DTL) Bayesian adaptive design to study the dose-
response relationship of the selective serotonin reuptake inhibitor 
(SSRI) citalopram in the treatment of CUD. Here we describe the key 
steps taken to design this study and the advantages it could potentially 
have for future medication development efforts for the treatment of 
cocaine and other substance use disorders.

Pharmacological rationale

Data from human and animal studies have demonstrated 
neuroadaptations that are correlated with, or caused by, chronic 
stimulant use. In addition to long-term changes in dopaminergic 
systems, alterations in serotonin (5-hydroxytryptamine (5-HT)) 
transmission have also been reported in addicted individuals. 
Specifically, depletion of brain 5-HT has been associated with the 
compulsive behavior seen in CUD [6-9]. The therapeutic potential 

of reversing this deficit with serotonergic medications has received 
attention in clinical trials of SSRI agents for CUD. Relative to other 
SSRI’s that have produced largely negative results in cocaine clinical 
trials [10-14], citalopram, a highly selective serotonin reuptake 
inhibitor with high affinity for the 5-HT transporter, has been effective 
in reducing cocaine-positive urines when administered with behavioral 
therapy in a double-blind placebo-controlled trial [15]. To date, the 
highest dose of citalopram evaluated in a randomized clinical trial 
(RCT) for the treatment of CUD has been 20 mg/day; substantially 
lower than doses shown to be beneficial for the treatment of obsessive 
compulsive disorder (i.e., 60 mg/day). Uncertainty regarding the 
adequate dose of citalopram for treatment of CUD prompted us to 
design a double-blind trial comparing two active medication arms (20 
mg/day; 40 mg/day) with placebo. The primary aim of the study is to 
select the most promising treatment arm to evaluate in a subsequent 
larger confirmatory trial, thus, we selected a DTL study design based 
on the following rationale. 
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Design rationale

Drawbacks of traditional clinical trials: Most medication 
development trials, including those in the field of substance use 
disorders, have employed conventional, placebo-controlled, fixed 
parallel group designs, involving only a few dose conditions and large 
sample sizes. These trials have been criticized for being too long, too 
expensive, and often uninformative if initial dose selection proved to 
be incorrect [16]. Two ways in which the clinical trial enterprise may be 
enhanced are the implementation of adaptive clinical trial designs and 
the application of Bayesian statistical approaches in monitoring and 
analyzing clinical trials [17-19].

Adaptive designs: Adaptive designs permit critical mid-trial 
design modifications to be made, based on interim information [16]. 
Since adaptations to the trial are pre-specified (by design) and not 
made in an unplanned or ad hoc manner, the integrity and validity 
of the trial are preserved. These adaptations are aimed at providing 
(1) better treatment of patients by limiting exposure to nonefficacious 
or unsafe doses and increasing exposure to more efficacious doses; 
(2) more efficient drug development; and (3) better use of available 
resources [20,21].

A drop-the-loser (DTL) adaptive design is useful in phase II clinical 
development especially when there are uncertainties regarding the dose 
levels [21-24]. DTL designs allow for multiple treatment arms with 
the opportunity to more fully characterize the dose-response curve 
during the initial phase of the trial. An interim analysis plan specifies 
the criteria for dropping doses that fail to show clinically meaningful 
efficacy over placebo. Conditions satisfying interim efficacy criteria 
are continued to completion. All dose groups, dropped or continued, 
contain valuable information for final statistical analysis regarding dose 
response of the treatment under study. This adaptive pruning permits 
the randomization of remaining participants to the conditions which 
demonstrate the most encouraging performance.

Bayesian statistical approaches: The recommended analysis 
strategy when using adaptive trials is Bayesian [17]. Put simply, 
the Bayesian strategy permits statements about the probability that 
treatment confers benefit.

Bayesian analysis posits a data generation model governed by an 
unknown model parameter, and often has as its goal the estimation 
of this parameter. Since there is uncertainty around the value of the 
parameter, the parameter is modeled as a probability distribution. 
Existing information about the parameter is represented by a prior 
probability distribution P(θ) that quantifies prior information about 
different parameter values that are obtained. Observed data from 
the current trial is represented by the likelihood P(data|θ) which is a 
probability distribution that quantifies how well the parameter values 
support the data. These two sources of evidence about the unknown 
parameter are mathematically combined to yield the posterior 
probability distribution using Bayes’ theorem:

The posterior distribution permits direct statements about the 
probability of a given effect size given the observed data (i.e., P(θ|data)). 
Bayes’ Theorem provides a mathematical learning rule that prescribes 
the optimal way to update prior evidence for parameter values with 
observed data [25]. As treatment outcomes accumulate over the course 
of the trial, updated posterior distributions provide increasingly precise 
estimates of treatment effects. Moreover, the probability that effects 

equal or exceed pre-specified threshold values can inform planned 
trial adaptations that may include altered allocation ratios for future 
randomization of subjects.

In situations like the current trial where there is little outside 
information about the optimal dose, a diffuse prior is often specified 
that is essentially flat across the range of possible parameter values. 
In such cases, the prior may not be reasonable from the clinicians’ 
perspective (i.e., implying that the treatment effect is equally likely to be 
beneficial and harmful) [26] but the posterior distribution it generates 
based on observed data is reasonable [17].

Prior specification: In the context of clinical trials, the prior 
distribution represents information about the parameter of interest in 
the absence of the observed outcomes. As with all statistical modeling, 
the choice of prior is a compromise between mathematical tractability, 
computational feasibility, and plausibility [27]. There are two distinct 
types of prior probability distributions to be considered. This distinction 
becomes important in planning Bayesian adaptive designs: use of 
clinical trial simulation for trial design requires rapid computation 
for feasibility while analysis of the data may ultimately employ more 
computationally intensive, but statistically flexible methods. More 
flexible methods may be necessary in the final analysis if, for instance, 
data violate parametric assumptions (e.g. in the original citalopram 
study [15] the outcome met Poisson assumptions, failure to do so in 
the current trial may require specification of negative binomial or 
zero-inflated distributions which might require more computationally 
intensive strategies such as Markov chain Monte-Carlo (MCMC) 
approaches). Conjugate prior distributions are attractive because they 
produce a posterior distribution of the same family as the prior, and 
simple formulas can quickly generate the posterior from the prior 
and likelihood. The mathematical and computational ease of using 
conjugate prior distributions is offset by their inflexibility. The Gamma 
distribution is the only conjugate prior for the Poisson likelihood, but 
the Gamma distribution may not be a plausible representation of the 
prior information about the parameter θ.

For a given likelihood, a non-conjugate prior is any probability 
distribution that is not conjugate to that likelihood. Since any probability 
distribution can be used, non-conjugate priors are extremely flexible. 
However, there is generally no closed-form solution for generating the 
posterior distribution from a non-conjugate prior. In the absence of 
closed-form solutions, MCMC methods, like the Metropolis-Hastings 
algorithm, are used to produce random samples from the posterior. 
The empirical distribution composed of many MCMC samples 
permits inference on the posterior distribution, though generating a 
sufficient number of samples for accurate inference takes significant 
computational time relative to computing the posterior from a 
conjugate prior.

Method
Study design, participants, setting

The current study is a double-blind, placebo-controlled 
randomized clinical trial with participants assigned to one of three 
possible medication conditions (citalopram 20 mg, citalopram 40 mg, 
placebo). Adult patients with CUD responding to study recruitment 
advertisements undergo an intake evaluation to determine potential 
eligibility. Inclusion criteria for the trial require being between 18 and 
60 years old and meeting Diagnostic and Statistical Manual of Mental 
Disorders-IV (DSM-IV) criteria for current cocaine dependence with 
provision of at least one benzoylecgonine (BE)-positive urine prior to 
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randomization. Exclusion criteria include: (1) dependence on alcohol 
or drugs other than cannabis or nicotine; (2) current non-substance 
induced Axis I psychotic, depressive, or anxiety disorder; (3) presence 
of existing cardiovascular disease including cardiac conduction 
defects as determined by electrocardiogram (EKG) evaluated by 
the collaborating cardiologist, and/or symptoms suggestive of 
cardiovascular problems not related to drug use such as hypertension 
(treated or untreated), stroke, chest pain; (4) taking medications 
that would contraindicate study medications (e.g., MAO inhibitors, 
other SSRI’s); (5) pregnancy or nursing; and (6) court-mandated 
treatment for cocaine dependence. A total sample of 125 participants 
will be enrolled in this single-site trial taking place at the outpatient 
Treatment Research Clinic (TRC) located at the University of Texas 
Houston, Center for Neurobehavioral Research on Addiction (CNRA). 
The research protocol, consent form, and all assessment/advertising 
materials are approved by the Committee for the Protection of Human 
Subjects (CPHS) of the University of Texas Medical School, Houston 
(Clinicaltrials.gov Identifier: NCT01535573).

Study procedures

Following assignment to one of the treatment groups, participants 
attend thrice weekly (MWF) clinic visits, including once a week 
individual cognitive-behavioral psychotherapy. Study medication 
is dispensed at each clinic visit along with a prize-bowl contingency 
management intervention reinforcing attendance [28]. Medication 
treatment begins with a 1-week dose escalation schedule, followed by 
maintenance for 7 weeks, and a 1-week dose reduction at week 9.

Study assessments

During intake evaluation, all subjects undergo a medical history 
and physical examination, laboratory tests (liver and thyroid function), 
and cardiac evaluation (i.e., 12- lead electrocardiogram). Vital signs 
(including heart rate, blood pressure, and weight) are obtained weekly 
during treatment. EKGs and blood pressure are closely monitored 
throughout the study, with a requirement of being normotensive (< 
140/90) to receive study medications. The Structured Clinical Interview 
for DSM-IV [29] and Addiction Severity Index [30] are administered to 
assess diagnostic criteria and addiction severity. A side-effects checklist 
is completed each week, with moderate to severely rated items evaluated 
by the study nurse and reviewed by the study physician. Cocaine use is 
assessed via urine rapid tests with Abuscreen OnTrak immunoassay 
kits (Roche Diagnostic Systems, Somerville, NJ) detecting the presence 
of cocaine (BE values > 300 ng/ml considered positive). Self-report data 
on cocaine use is collected at each clinic visit using a timeline follow-
back procedure. The primary outcome measure is longest duration of 
abstinence (LDA) based on urine BE values < 300 ng/ml. As used in 
the initial citalopram trial [15], LDA is a count variable which follows a 
Poisson distribution. It serves as a composite metric of both treatment 
retention and cocaine use [31].

Adaptation and analytic plan

Initial randomization and interim analysis plan: The first 63 
subjects enrolled (50% of total sample size) are urn randomized to 
placebo, 20 mg/d of citalopram, or 40 mg/d of citalopram to ensure 
balanced groups with respect to severity of cocaine addiction [32]. A 
planned interim analysis will be performed at 50% of data gathering 
(n=63) to drop or “prune” the active medication group that is 
performing least well. This analysis will be based on the primary 
endpoint, LDA. Interim decision rules for pruning based on simulation 
results (described below) are shown in Figure 1. An unblinded, third-

party statistician will perform the analysis and report the results to the 
pharmacist, keeping the investigators and staff blind until the second 
half of the trial is over (Figure 1). 

Statistical model: Interim and final analyses utilize Bayesian 
generalized linear models for count outcomes. Several potential models 
exist for count data (e.g. Poisson, Negative Binomial, etc.), so model 
selection is dependent on goodness-of-fit, indexed by the Deviance 
Information Criterion [25]. The Deviance Information Criterion (DIC) 
is a generalization of the Akaike Information Criterion and Bayesian 
Information Criterion. Similar to these other penalized likelihood 
criteria, the DIC measures relative goodness-of-fit adjusting for model 
complexity, with smaller values indicating better fit to the observed 
data. The prior distributions are specified as vague and neutral: beta 
regression coefficients ~ N (mean=0, variance = 1 × 106) in the log 
form, and ~Unif (0,1) for the inverse of the dispersion parameter (for 
models other than the Poisson). This extremely vague and neutral prior 
allows the observed data to dominate the effect size estimates.

Decision rules: Anticipated effects are based on results from 
Moeller, et al. [15]. Pre-specified decision rules using the Bayesian 
posterior probabilities at the interim analysis will dictate which doses 
to retain for the remainder of the trial. The placebo condition is always 
retained. If there is < 95% posterior probability that the 20mg dose 
increases LDA by a factor of 1.49 relative to placebo, then the 20mg 
treatment arm will be dropped. If there is a < 95% posterior probability 
that the 40mg dose increases LDA by a factor of 3.0 relative to placebo, 
then the 40mg treatment arm will be dropped. If both conditions 
meet the retention criteria, then the condition with the largest effect 
size will be retained. If both conditions meet the drop criteria, then 
the condition with the largest effect size will retained, unless there is 
evidence of increased adverse effects. The final 62 subjects to enroll 
in the trial will be urn randomized to placebo or the retained, ‘best 
efficacy’ citalopram condition.

Final analysis: The final analysis will include all patients, evaluating 
LDA as a function of treatment: those from the placebo treatment arm 
(N = 52), the retained treatment arm (N = 52), and the treatment arm 
that was pruned at the interim analysis (N = 21). Though the pruned 
treatment condition will have a smaller sample size, the observed 
patients still provide information about efficacy of that dose, albeit 
with less precision than available for the retained treatment arm. The 
design stipulates that, at the final analysis, 95% posterior probability 
of a difference between an active condition and placebo constitutes 
sufficient evidence to conclude that a statistically reliable difference 
exists. Final results from this ongoing trial will be reported in a 
forthcoming publication.

Simulation study

Designing an adaptive trial typically begins with a simulation study 
to address issues such as timing and frequency of interim analyses, and 
to understand the operating characteristics associated with the criteria 
for dropping arms. A Monte Carlo simulation study assessed the merits 
of a DTL design relative to a non-adaptive parallel-group approach. 
The simulation study evaluated multiple decision rules under three 
different scenarios that may occur during the trial. Though many 
decision rules were evaluated, only simulation results for the proposed 
decision rules are reported. The 2007 finding by Moeller, et al. [15] that 
20 mg citalopram increased LDA by a factor of 2.5 relative to placebo 
guided the choice of simulated effect sizes.

Allocation of existing resources for conducting the clinical trial 
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placed limitations on the sample size we could credibly randomize 
(N = 125). As mentioned, substantial evidence already existed for the 
anticipated effects in the placebo and 20 mg citalopram conditions 
[15] and expert opinion permitted credible estimates for the 40-mg 
condition. Having defined the sample size and anticipated effects we 
simulated K = 10,000 clinical trials testing the performance of various 
decision-rules for the correct selection of the best dose (in this case 40 
mg citalopram). The simulations evaluated multiple decision rules that 
manipulated two parameters, the effect size that constituted a clinically 
meaningful value, and the posterior probability that this effect existed. 
Having identified a set of effect sizes and posterior probabilities that, by 
consensus we agreed would constitute sufficient evidence to warrant 
moving to a larger trial, we applied these rules to additional scenarios. 

Scenario One considered a dose-related efficacy increase, such 
that 40 mg of citalopram outperforms 20 mg of citalopram relative to 
placebo. This scenario was modeled as a 20 mg citalopram condition 
that increased LDA by a factor of 2.5 relative to placebo, and a 40mg 
citalopram condition that further increased LDA by a factor of 3.5 
relative to placebo. The anticipated outcome in this scenario was 
retention of the 40 mg citalopram dose at the interim analysis, thereby 
exposing more patients to optimal treatment, and selection of the 40 
mg citalopram dose as the optimal treatment at the final analysis. The 
proportion of simulated trials that identified the 40mg dose as optimal 
provided a Monte Carlo estimate of the power under this scenario.

Scenario Two considered the potential side effect profiles of the 
higher dose resulting in poorer performance for 40 mg of citalopram. 
This scenario was modeled as a 20 mg citalopram condition that 
increased LDA by a factor of 2.5 relative to placebo, and a 40 mg 
citalopram condition that did not outperform placebo (risk ratio of 
1.0). The anticipated outcome in this scenario was retention of the 
20 mg citalopram dose at the interim analysis and selection of the 20 
mg citalopram dose as the optimal treatment at the final analysis. The 
proportion of simulated trials that identified the 20mg dose as optimal 
provided a Monte Carlo estimate of the power under this scenario.

Scenario Three considered the null case that neither dose of 
citalopram confers greater benefit than placebo. This scenario was 
modeled with 20 mg and 40 mg conditions with risk ratios of 1.0 
relative to placebo. The proportion of simulated trials that identified 
either of the citalopram doses as superior to placebo provided a Monte 
Carlo estimate of the type I error rate.

Results
K = 10,000 simulations were run for each scenario to provide 

estimates of the trial’s operating characteristics. The LDA endpoint was 
modeled as a Poisson (θ) outcome, with risk ratios 1.0, 2.5, and 3.5 
corresponding to θ = 2, 5, and 7 respectively. For simulation purposes, 
a Gamma (α = 2, β = 0.776) distribution provided a vague and neutral 
prior distribution for the Poisson distributed outcome. The Gamma 
distribution is the conjugate prior to the Poisson likelihood, providing 
a straightforward algebraic solution for the posterior distribution that 
substantially decreased computational burden. Note that this is different 
from the Normal (0, 1 × 106) prior chosen for the analysis. Since the 
Normal (0, 1 × 106) prior is not conjugate to the Poisson likelihood, 
there is no simple closed-form solution, so a computationally-intensive 
MCMC algorithm has to be used to estimate the posteriors. Although 
this MCMC approach is not too burdensome when analyzing the 
results of a single trial, evaluating the operating characteristics of a set 
of decision rules requires computing posteriors for 10,000 trials for 
each of three different scenarios. With the Gamma conjugate prior the 
full set of 30,000 trials takes minutes to simulate, but since the normal 
prior requires MCMC approximation, over an hour elapses before the 
results of the simulation are ready to be reviewed. Since the design 
phase of the trial requires simulating many thousands of simulations 
each for a spectrum of decision rules to identify the ones with desirable 
operating characteristics, the choice of the Gamma conjugate prior 
allows swift evaluation of the possible decision rules. Upon selection 
of decision rules, simulations using MCMC confirmed the desirable 
operating characteristics hold with a Normal (0, 1 × 106) prior.

Planned Interim Analysis 
(when 50% of randomized subjects have completed trial)

Interim Criteria for Pruning:
1. Drop citalopram 20 mg/d dose if < 95% probability that effect of dose ≥1.49.
2. Drop citalopram 40 mg/d dose if < 95% probability that effect of dose ≥ 3.00.
3. If both citalopram doses meet retention criteria, retain the dose condition with the largest effect size.
4. If both citalopram doses meet drop criteria and there is no evidence of increased adverse events, retain dose 

condition with the largest effect size.
5. Retain placebo condition.

Cocaine dependent 
patients

N=125

Citalopram
(40 mg/d)

Random Assignment

Citalopram
“best efficacy” dose

Posterior Probability ≥ 95% 
that the best dose confers 
benefit over placebo (Risk 
Ratio > 1.0).

Citalopram
(20 mg/d)

Placebo

Placebo

Figure 1. Diagram of the adaptive DTL clinical trial design of citalopram for CUD showing randomization to three initial treatment arms. Based on the findings of the interim analysis, the 
treatment arm that is performing least well will be dropped based on pre-specified criteria. The “best efficacy” arm, defined here as the condition showing a 95% probability of benefit over 
placebo (Risk Ratio > 1.0) will proceed to the second half of the trial.
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Simulation results, presented in Table 1, support the proposed DTL 
design in showing that under scenarios reflecting the hypothesized 
treatment effects, the adaptive design allocates more subjects to the 
more promising treatment conditions, i.e., appropriate “pruning” 
of less efficacious conditions. Under Scenario One, the simulations 
demonstrated this trial design has 90.2% power (probability of selecting 
the 40 mg as optimal at the final analysis), and on average 49.99 subjects 
are allocated to the optimal dose. Under Scenario Two, the simulations 
demonstrated this trial design has 81.8% power (probability of selecting 
the 20 mg as optimal at the final analysis), and on average 52 subjects 
are allocated to the optimal dose. Under Scenario Three, this trial design 
has a less than 0.01% Type I error rate (probability of deciding that 
either dose is better than placebo). As mentioned, simulations in Table 
1 utilized conjugate gamma priors for Poisson outcome which were 
computationally more efficient for evaluating a wide variety of decision 
rules. At the same time the use of the gamma prior did not reflect the 
final planned analysis approach, and was somewhat more informative 
than that planned approach (hence the observed lower Type 1 error 
rate). As such we utilized the more computationally efficient approach 
to identify a subset of decision rules for evaluation using the final 
analytic model which was computationally more intense requiring 
MCMC methods. Subsequent inspection of the rates using the vague, 
neutral Normal priors (Table 2) indicates satisfactory power and Type 
I Error rates. These compare favorably with the classical fixed design 
which achieves similarly high power and low Type I error rate, but only 
allocates 42 subjects to the optimal treatment arm. Thus, employing 
the proposed DTL design is likely to yield the same conclusions as 
the classical fixed (non-adaptive) design, but with greater statistical 
precision for the most promising treatments (Table 1 and 2).

The decision rules demonstrated adequate power and Type I error 
rates at interim analysis. Relative to a conventional parallel groups 
design, the sample size allocated to the placebo and most promising 
conditions increased by 20% and 23% respectively for Scenarios One 

and Two. This increase in sample size results in a corresponding 
increase in precision for the effect size estimate.

Discussion
Summary

Here we report the rationale and supporting documentation for a 
novel DTL adaptive clinical trial of citalopram for treatment of CUD. 
Based on preliminary support for the SSRI citalopram, the present 
study seeks confirmation and determination of optimal dosing. The 
Moeller, et al. [15] effects were used to construct decision rules that 
were subsequently simulated and confirmed to have desirable operating 
characteristics. In the end, the trial should demonstrate efficiency by 
reducing the sample size in the poorer performing condition and, in 
doing so, allocating resources to the most promising condition, thereby 
providing a more precise estimation of the treatment’s effect. This 
innovative design is not without practical issues and considerations, 
outlined below.

Assumption of constant patient population

The many benefits of adaptive clinical trials require additional 
planning during the design of the trial. Adaptive trials assume that 
patient characteristics are constant over the entire duration of the trial 
[33]. If a population from which an investigator samples changes over 
time (e.g. a newly introduced, successful treatment alters the nature 
of the patients still seeking to enroll in an ongoing clinical trial), then 
the effect sizes from before and after the interim analysis may not 
be exchangeable. It is incumbent on an investigator to appraise the 
likelihood that such a secular (exogenous) change might occur. As 
it is often discussed, the investigator must evaluate the “treatment 
horizon” or the number of patients that will likely be treated according 
to currently prevailing practice [34]. In our case, the treatment horizon 
was likely to remain unchanged through the course of the trial: no 

Scenario Group Means p (Select best dose based on interim analysis)a Average final N p (Select best dose based on final)b

λplac λ20 mg λ40 mg nPlac n20 n40
One: 40 mg 2 5 7 0.902 52 23.02 49.99 ≥ 0.999
Two: 20 mg 2 5 2 0.818 52 52 21  0.975

Group Means p (Type I Error at interim analysis)a Average Final N p (Type I Error at final analysis)b

p (20 mg 
Best | H0)

p (40 mg Best | H0)

λplac λ20 mg λ40 mg nPlac n20 n40
Three: Null 2 2 2 ≤ 0.0001 ≤ 0.0001 52 36.42 36.57 ≤ 0.0001

Table 1. Operating characteristics of proposed DTL design with Gamma prior. aSelection at the interim analysis uses the pruning criteria of > 0.95 posterior probability that effects are 
R.R. > 1.49 and 3.00 relative to placebo for Doses 20 mg and 40 mg respectively. bSelection at the final analysis uses the criteria of > 0.95 posterior probability that effects of the selected 
treatment confers benefit (R.R. > 0) relative to placebo. 

Scenario Group Means p (Select best dose based on interim analysis)a Average final N p (Select best dose based on final)b

λplac λ20 mg λ40 mg nPlac n20 n40
One: 40 mg 2 5 7 0.931 52 22.5 50.5 ≥ 0.999
Two: 20 mg 2 5 2 0.849 52 52 21  ≥ 0.999

Group Means p (Type I Error at interim analysis)a Final N p (Type I Error at final analysis)b

p (20 mg 
Best | H0)

p (40 mg Best | H0)

λplac λ20 mg λ40 mg nPlac n20 n40
Three: Null 2 2 2 ≤ 0.001 ≤ 0.001 52 36.5 36.5 ≤ 0.031

Table 2. Operating characteristics of proposed DTL design with Normal prior. aSelection at the interim analysis uses the pruning criteria of > 0.95 posterior probability that effects are R.R. 
> 1.49 and 3.00 relative to placebo for Doses 20 mg and 40 mg respectively. bSelection at the final analysis uses the criteria of > 0.95 posterior probability that effects the selected treatment 
confers benefit (R.R. > 0) relative to placebo. 
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efficacious treatments currently exist for cocaine dependence and none 
under study are ready for FDA indication. This assumption can also be 
threatened by protocol amendments that change inclusion/exclusion 
criteria, leading to a trial adapting to a moving target population [21]. 
The present trial addresses this by carefully selecting inclusion/exclusion 
criteria consistent with those used at this center for over 20 years of 
clinical trials for cocaine dependence. Characteristics of participants 
recruited into studies at UT-Houston have, and are anticipated to, 
remain relatively constant through the course of the trial.

Enrollment rate and follow-up time

Useful adaptation depends on the tradeoffs between enrollment 
rate and follow-up time; if the enrollment rate is too high relative to the 
time required to obtain endpoints with delayed readout, all the patients 
may be enrolled before the interim analysis results are available [35]. 
In the present trial, the LDA endpoint is feasible despite delayed 
availability due to estimated enrollment rates at the study site.

Timely trial adaptation also requires swift electronic data capture 
and transmission to the data analysis group [33,36]. Clinical staff 
electronically entered urine drug screen results on the same day as 
testing and statistical staff frequently examined the database to check 
for data entry errors, so that a cleaned dataset would be promptly 
available for interim analysis.

Informed consent

Accurately conveying study information to participants during 
the informed consent process is straightforward. In this trial, since the 
medication is the same in both active treatment arms and clinic staff 
remain blind to condition assignment, the informed consent form does 
not discuss the adaptive nature of the trial. In other trials, statements 
such as “At first, there will be an equal chance of being assigned to 
either group. As the study goes along, however, the chance of being 
assigned to the treatment that worked better so far will increase” have 
been included on informed consent documents [37].

Deterministic retention rules

Given its proof-of-concept nature, this trial differs from an optimal 
adaptive design. In this trial, failure of both conditions to meet the 
probabilistic decision-rule thresholds resulted in the deterministic 
retention of the best condition. It is possible that the pre-specified 
probabilistic decision-rule thresholds could potentially be too strict, 
prematurely dropping treatment arms that confer benefit over 
placebo. This is evident by the type I error rate < 0.0001. Based on our 
experience, rather than lowering the thresholds, we recommend using 
the distributions of anticipated effects to take into account uncertainty 
concerning the effect size parameter values. This would permit for more 
robust and realistic clinical trial planning. Given the need to evaluate the 
adequacy of the decision-rules as well as salient secondary hypotheses, we 
decided to retain the best-performing active condition in the absence of 
harm. A more efficient design might simply end the trial at the interim 
analysis if both active treatments failed to meet the thresholds. 

Similarly, if both active treatments met probabilistic decision-rule 
thresholds, then only the best condition was retained. Depending on 
the goal of the trial, both conditions might be retained to weigh the 
utility of both doses. However, the goal of this trial was to identify an 
optimal dose for a registration trial, so deterministic retention of only 
a single active treatment provides for more precise effect size estimates 
for that dose to better inform the confirmatory trial.

Interim analysis delay

In the current trial, after enrollment of the 63rd subject, we plan to 
halt further enrollment and wait until all of the subjects in the initial 
phase complete the 13-week treatment, so that a complete dataset can 
be used for the interim analysis. Though the enrollment rates at the 
study site are modest, this temporary break in enrollment will slightly 
increase the overall time required to complete the trial. The alternative, 
i.e., to continue enrollment beyond the 63rd participant prior to interim 
analysis, poses the chance that participants who are enrolled during 
the interim analysis delay might perform in such a way as to alter the 
conclusions of the interim analysis. For instance, if just prior to the 
completion of the 63rd participant, two additional participants were 
randomized to the condition that the interim analysis recommended 
dropping, and these participants, upon completion, behaved in such 
a way as to alter the interim analysis conclusions, investigators would 
face the question of whether the decision-rule had truly optimized 
the trial. One way to potentially avoid this halt to enrollment would 
be to conduct a sensitivity analysis utilizing a posterior-predictive 
distribution to assess the chance that the observations remaining 
to be made on active participants might change the interim analysis 
conclusions [38]. Assuming that the probability does not exceed some 
predefined cut-off, investigators could proceed with the trial with 
reasonable confidence that the interim analysis conclusions would not 
require revision.

Conclusions
Bayesian adaptive designs can increase efficiency of clinical trials. 

Increased precision of estimates for the most efficacious condition 
can result from allocation of a larger proportion of participants to 
the most salient conditions based on appropriate decision-rules. 
Monte Carlo simulation can be used to identify decision-rules that 
demonstrate accepted levels of Power and Type I Error associated with 
conventional parallel group clinical trials. Additional adaptive trial 
designs (e.g., Bayesian Continuous Re-Assessment Method for Phase 
I dose-finding) exist that can optimize other design characteristics. 
These innovative design features have been underutilized in clinical 
trials of pharmacotherapies for drug addiction relative to other areas 
of medication development. Given the urgent and unfulfilled need to 
identify an effective treatment medication of CUD, flexible designs that 
allow early detection of success or failure warrant serious consideration 
in future studies. 
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