Research Article

ISSN: 2056-6360

Non-targeted human plasma metabolomics reveals the changes in oleoylethanolamide, a lipid-derived signaling molecule, by acute exposure of electric field

Nakagawa-Yagi Y1*, Hara H1, Fujimori T2, Yamaguchi T3, Midorikawa A4 and Hara A1

¹Hakuju Institute for Health Science Co., Ltd., 37-5 Tomigaya 1-chome, Shibuya-ku, Tokyo 151-0063, Japan
 ²Human Metabolome Technologies Inc., 246-2 Mizukami Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
 ³Acel, Inc., SIC-1 1201, 5-4-21 Nishihashimoto, Midori-ku, Sagamihara, Kanagawa 252-0131, Japan
 ⁴World Fusion Co., Ltd., 2-15-15 Nihonbashi Ningyo-cho, Shinsendo Bld 7F, Chuo-ku, Tokyo 103-0013, Japan

Abstract

Medical treatment using high-voltage electric potential (HELP) device to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, little is known about the underlying mechanisms of the potential benefits to health. The identification of EF exposure -related biomarkers is key to understanding the beneficial effects of EF therapy. We screened plasma metabolites obtained prior to and immediately after HELP exposure (18 kV, 30 min) in 10 healthy human subjects by via non-targeted plasma metabolomic analysis. Among 161 metabolites, several fatty acid amides containing a signaling molecule oleoylethanolamide (OEA) and fatty acids were significantly upregulated. Under these conditions, HELP exposure had no effect on citric acid and ornithine cycle intermediates. Because OEA is known to induce lipolysis as a putative endogenous ligand of peroxisome proliferator-activated receptor (PPAR)- α , we further confirmed the effect of OEA on gene expression using human subcutaneous cultured adipocytes. Peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) mRNA was upregulated by OEA treatment. OEA-induced ACOX1 mRNA expression was sensitive to a PPAR- α antagonist GW6471. Our findings will provide the new insights into the molecular mechanisms of EF therapy.

Abbreviations: ACOX1: Peroxisomal Acyl-coenzyme A Oxidase 1; ACSL3: Acyl-CoA Synthetase Long-chain Family Member 3; CE-TOFMS: Capillary Electrophoresis-time-of-flight Mass Spectrometry Electron Ionization-mass Spectrometry; CYP4A11: Cytochrome P450, Family 4, Subfamily A, Polypeptide 11; DGAT2: Diacylglycerol Acyltransferase-2; EF: Electric Field; ELISA: Enzyme Linked Immunosorbent Assay; FAT/CD36: Fatty Acid Translocase/ Cluster of Differentiation 36; GAPDH: Glyceraldehyde 3-phosphate Dehydrogenase; GPR: G Protein-coupled Receptor; GW6471: N-((2S)-2-(((1Z)-1-methyl-3-oxo-3-(4-(trifluoromethyl)phenyl) prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl) ethoxy)phenyl)propyl)propanamide; GW9662: 2-Chloro-5-nitro-N-phenylbenzamide; HDLBP: High Density Lipoprotein Binding Protein; HDL-C: High Density Lipoprotein-cholesterol; HELP: Highvoltage Electric Potential; LC-TOF-MS: Liquid Chromatography-timeof-flight Mass Spectrometry Electron Ionization-Mass Spectrometry; LDL-C: Low Density Lipoprotein-cholesterol; mRNA: Messenger Ribonucleic Acid; OEA: Oleoylethanolamide; PPAR-a: Peroxisome Proliferator-activated Receptor-alpha; qRT-PCR: Quantitative Reverse Transcription Polymerase Chain Reaction; TRPV1: Transient Receptor Potential Vanilloid 1

Introduction

A therapeutic device to expose the human body to high-voltage electric potential (HELP) was approved by the Ministry of Health, Labour and Welfare in Japan. High-voltage electric field (EF) therapy is reportedly an effective treatment for stiff shoulders, constipation, insomnia and headache, while the effects of EF exposure on several blood parameters and liver diacylglycerol acyltransferase-2 (DGAT2) mRNA expression have been described [1-3]. However, much of the evidence regarding the effect of EF was based on manipulations involving immobilization stress using experimental animals. Thus, it remains unclear whether the observations following EF exposure were derived individually from EF exposure or in conjunction with immobilization stress. Several human studies have reported the effects of whole-body exposure to HELP on clinical biochemical parameters [4-6], and described a visual analog scale to measure pain [7-9]. Taken together, the results of these studies suggest that HELP exposure may present an alternative therapy for several conditions, although, the mechanisms remain elusive.

Endogenous metabolites have been suggested as candidate molecules that may represent an interface between symptoms and therapeutic target proteins. Metabolomics is a relatively recent discipline dedicated to the global study of endogenous metabolites in tissues

Correspondence to: Yuzo Nakagawa-Yagi, Ph.D, Hakuju Institute for Health Science Co., Ltd., 37-5 Tomigaya 1-chome, Shibuya-ku, Tokyo 151-0063, Japan, Tel: (+81)3-5478-8833; Fax: (+81)3-5478-9825; E-mail: yagi@hakuju.co.jp

Key words: biomarker, oleoylethanolamide, peroxisomal acyl-coenzyme A oxidase 1

Received: October 01, 2014; Accepted: October 12, 2014; Published: October 14, 2014

and biofluids [10-12]. Considerable evidence on the identification of the link between endogenous metabolites and symptoms has been obtained from studies using non-targeted metabolomics in the dorsal horn of rats with neuropathic pain [13]. A non-targeted metabolomic approach may be useful to identify EF-induced biomarkers. The aim of the present study was to clarify changes to endogenous small molecules after EF exposure. We screened the metabolic differences in plasma samples obtained from healthy subjects before and after acute EF exposure using capillary electrophoresis (CE)-time-of-flight mass spectrometry (TOFMS) and liquid chromatography (LC)-TOFMS. The results of this study indicate that EF exposure results in increased levels of the endogenous signaling molecule oleoylethanolamide (OEA). Because OEA has been shown to bind to peroxisome proliferatoractivated receptor (PPAR)-a [14], we also investigated whether OEA altered gene expression profiles in human subcutaneous adipocytes by microarray analysis.

Materials and Methods

EF exposure

The system used for EF exposure has been previously described [6,8,15]. The EF system was equipped with a transformer, a seat, and two insulator-covered electrodes that were placed on a floor plate on which the subject's feet were located and above the head of the subject. EF generated by the HELP apparatus (Healthtron PRO-18T or Hb9000T; Hakuju Institute for Health Science Co., Ltd., Tokyo, Japan) was created uniformly by transforming 50 Hz alternating current at 18 kV and 9 kV, respectively. The surface EF levels generated by the high voltage (9 kV) electric potential supply were 9.96 kV/m to the neck or 11.6 kV/m to the legs. The safety of this system for human use was established by the Japanese government in 1963.

Subjects

Ten healthy adults (5 males and 5 females; mean age, 40.2 ± 10.2 years; mean body mass index (BMI), 22.0 ± 2.4 kg/m²) participated in experiment 1 (exposure conditions: 18 kV for 30 min). Ten healthy adults (6 males and 4 females; mean age, 44.4 ± 9.7 years; BMI, 22.3 ± 3.2 kg/m²) participated in experiment 2 (exposure conditions: 9 kV for 30 min). The experiments were performed in the morning and all participants signed an informed consent form after receiving verbal and written information about the study. The experiments were conducted in accordance with the Declaration of Helsinki and the study protocol was approved by the human ethics committee of Hakuju Institute for Health Science Co., Ltd. (Tokyo, Japan).

Sample preparation

Blood samples were collected in vacutainer tubes coated with ethylenediaminetetraacetic acid (VP-NA070K; Terumo Corporation, Tokyo, Japan) and immediately centrifuged at $800 \times g$ for 5 min using centrifuge to separate plasma from other cellular materials. Subsequently, plasma was transferred to a fresh eppendorf tube and stored at -80°C until processed.

CE-TOFMS measurements

Metabolites were measured as described previously [10,16,17]. In brief, 50 μ L of plasma was added to 450 μ L of methanol containing internal standards (Solution ID: H3304-1002; Human Metabolome Technologies, Tsuruoka, Japan) at 0°C in order to inactivate enzymes. The extract solution was thoroughly mixed with 500 μ L of chloroform and 200 μ L of Milli-Q water and centrifuged at 2,300×g and 4°C for 5

min. Then, 350 μ L of the upper aqueous layer was centrifugally filtered through a Millipore 5-kDa cut-off filter (Millipore Corporation, Billerica, MA, USA) to remove proteins. The filtrate was centrifugally concentrated and re-suspended in 50 μ L of Milli-Q water for CE-MS analysis.

LC-TOFMS measurement

A 500 µL aliquot of plasma was added to 1,500 µL of 1% formic acid/acetonitrile containing internal standard solution (Solution ID: H3304-1002, Human Metabolome Technologies) at 0°C in order to inactivate enzymes. The solution was thoroughly mixed and centrifuged at 2,300×g and 4°C for 5 min. The supernatant was filtrated using a hybrid SPE phospholipid cartridge (55261-U; Supelco, Bellefonte, PA, USA) to remove phospholipids. The filtrate was desiccated and then dissolved in 100 µL of isopropanol/Milli-Q water for LC-MS analysis. LC-TOFMS was performed using an Agilent LC System (Agilent 1200 series RRLC system SL) equipped with an Agilent 6230 TOF mass spectrometer (Agilent Technologies, Waldbronn, Germany). The systems were controlled using Agilent G2201AA ChemStation software version B.03.01 for CE (Agilent Technologies). Cationic and anionic compounds were measured using an octadecylsilane column (2×50 mm, 2 µM), as previously described [10,16,17]. Peaks were extracted using the MasterHands automatic integration software (Keio University, Tsuruoka, Japan) to obtain peak information including the m/z ratio, retention time for LC-TOFMS measurement (RT), and peak area. Signal peaks corresponding to isotopomers, adduct ions, and other producted ions of known metabolites were excluded. The remaining peaks were annotated with putative metabolites from the HMT metabolite database based on MT/RT and m/z values as determined by TOFMS. The tolerance range for the peak annotation was configured at ± 0.5 min for MT and ± 10 ppm for m/z. In addition, peak areas were normalized against those of the internal standards and then the resultant relative area values were further normalized by sample amount.

Molecular modeling and docking study

The X-ray crystal structure of PPAR- α complexed with agonist AZ242 (1i7g; Protein Data Bank Japan) was used for the molecule docking [18]. A docking study of the binding of OEA to PPAR- α was performed using the Surflex-Dock program included with the Sybyl-X2.0 software package (Tripos International, St. Louis, MO). The docking experiment was performed five times and yielded five docking positions.

Affymetrix GeneChip Microarray

Human white subcutenous preadipocytes (Lonza, Basel, Switzerland) were cultured in preadipocyte basal medium-2 (Lonza) supplemented with 2 mM L-glutamine and 10% fetal bovine serum (Lonza). In brief, 1×10⁴ cells were seeded in wells of 96-well multiwall plates. Differentiation was induced by treating the cells with a differentiation medium containing insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine (all supplied by Lonza) for 6 days. RNA isolated from each sample was processed and hybridized to an Affymetrix GeneChip Human genome U133 Plus 2.0 array according to the protocols described in the GeneChip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA). Raw data was submitted to the National Center for Biotechnology Information (NCBI) Gene Expression Omunibus (GEO) database (http://www.ncbi.nlm.gov/geo/, platform accession number GSE55539).

Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was performed as described [19]. In brief, total RNA (1 µg) was isolated from mycelia fragments using the RNeasy Plus Micro Kit (Qiagen, Valencia, CA, USA) and then reverse transcribed using QuantiTect Reverse Transcription Kit (Qiagen) with the following primers : ACOX1-F, GTA TGG AAT CAG TCA GAA CGC; ACOX1-R, CTT GTA AGA TTC GTG GAC CTC; FAT/CD36-F, TTG ATG TGC AAA ATC CAC AGG; FAT/CD36-R; TGT GTT GTC CTC AGC GTC CT; ACSL3-F, GAG AGT TTG AAC CCG ATG GA; ACSL3-R, TTG GCA CAA CAA ATC CAA TG; HDLBP-F, CCG TCC GAG AGG CAC AGA; HDLBP-R, CCG CCA TAC TCT TCA GCA ATC; PPAR-α-F, CAG AAC AAG GAG GCG GAG GTC ; PPAR-α-R, TTC AGG TCC AAG TTT GCG AAG C; PPAR-y-F, ACC AAA GTG CAA TCA AAG TGG A; PPAR-y-R, ATG AGG GAG TTG GAA GGC TCT; and GAPDH-F, CAT CCC TGC CTC TAC TGG CGC TGC C; GAPDH-R, CCA GGA TGC CCT TGA GGG GGC CCT C. All qPT-PCR reactions were performed using SYBR Premix EX Tag (Takara Bio Inc., Otsu, Japan). Amplification and detection were performed under the following conditions: 95°C (10 sec) and 60°C (1 min) for 50 cycles. Fold induction values were calculated according to the equation $2^{\Delta\Delta}$ Ct, indicating the differences in cycle threshold numbers between the target gene and glyceraldehyde 3-phosphate dehydrogenase 2 (*GAPDH2*) where $\Delta\Delta$ Ct represents the relative values in the differences between controls and treatments.

Chemicals

Oleoylethanolamide (OEA), GW6471 and GW9662 were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany).

Statistical analysis

The data was analyzed using Welch's *t*-test. A probability (*p*) value <0.05 was considered statistically significant.

Results

Effect of HELP exposure on metabolites in plasma from healthy humans

CE- and LC-TOFMS analyses were used to measure the abundance of a total of 161 metabolites in the plasma obtained from healthy participants. The results of hierarchical cluster analysis of metabolic patterns are shown in Figure 1. There was a remarkable difference in metabolites before and after HELP (18 kV, 30 min) exposure (Table 1). In total, 31 metabolites were significantly upregulated after HELP exposure which included fatty acid amides (OEA, palmitoylethanolamide, and stearoylethanolamide); fatty acids [oleic acid, linoleic acid, linolenic acid, cis-4,7,10,13,16,19-docosahexaenoic acid, cis-5,8,11,14,17-eicosapentaenoic acid, cis-8,11,14-eicosatrienoic acid, cis-11,14-eicosadienoic acid, cis-11-eicosenoic acid, arachidonic acid, ethyl arachidonate, nervonic acid, FA(22:5), FA(22:4), FA(19:1), FA(17:0), FA(14:0), palmitic acid, stearic acid, and heptadecanoic acid]; amino acids (isethionic acid, N-acetylglycine, N-acetylalanine, and phosphocreatine); steroids (dehydroisoandrosterone 3-sulfate, and etiocholan-3a-ol-17-one sulfate); UDP; 2-hydroxybutyric acid; and threonic acid. In contrast, 26 metabolites were downregulated after HELP exposure which included fatty acids [lauric acid, decanoic acid, pelargonic acid, octanoic acid, heptanoic acid, hexanoic acid, valenic acid, AC(18:2), AC(16:2), AC(16:1), AC(14:2), AC(14:0), AC(12:1), and AC(12:0)]; amino acids (Ala, Tyr, Phe, Trp, Met, cystine, hydroxyproline, sarcosine, hippuric acid, and γ-butyrobetaine); glycochenodeoxycholic acid; and cholesterol sulfate. Under these

Figure 1. Metabolomic analysis of human healthy plasma between before and after HELP (18 kV) exposure for 30 min. (a) Heat map representation of hierarchical clustering of molecular features found in each sample (B: before, n=10; A: immediately after exposure, n=10). Red and green indicate high and low concentrations of metabolites, respectively. (b) Typical OEA peak in healthy human plasma. OEA detected by LC-TOFMS. The figure includes overlaid electropherograms of before (blue) and after (red) samples.

conditions, there was no effect of HELP (18 kV, 30 min) exposure against cortisol/cortisone in plasma from healthy participants. In addition, HELP (18 kV, 30 min) exposure had no effect on citric acid and ornithine cycle intermediates.

Furthermore, the nature of the OEA responsible for EF strength was investigated. The OEA change in relative ratio of after/before was at 1.17 (p=0.079) for 9 kV. We also examined the effect of different processing time (60 min), but found no significant changes caused by HELP (18 kV) exposure (1.09-fold; p=0.422).

Docking of OEA on the nuclear receptor PPAR-a

OEA is a fatty acid amide known to induce lipolysis as a putative endogenous ligand of PPAR- α [14,20,21]; therefore we hypothesized that increased plasma OEA levels after EF exposure may be linked to changes in the fatty acid content in plasma. We next examined the binding mode study of OEA in active site of PPAR- α using Sybyl-X2.0 software. As shown in Figure 2, OEA formed hydrogen bonds with Ser280, Tyr314, and Phe273. The results indicated that OEA would bind to PPAR- α .

Gene expression analysis of human-derived adipocytes

In order to determine whether the docking of OEA on the nuclear receptor PPAR- α reflected a change in the human cellular function, we tested the effect of OEA on gene expression using the Affymetrix GeneChip human genome U133 Plus 2.0 array. The addition of 10 μ M OEA to human subcutaneous adipocytes significantly affected the expression of 1013 genes (556 upregulated and 457 downregulated).

Table 1: Non-targeted metabolite	profiling in human	healthy plasma.
----------------------------------	--------------------	-----------------

Metabolite	Before	After	Ratio
N=10	Mean \pm SD	Mean \pm SD	After/Before p
			value
Fatty acid amides			
Oleoylethanolamide	$2.2E-05 \pm 5.1E-06$	$2.7E-05 \pm 8.4E-06$	1.24 0.009**
Palmitoylethanolamide	$2.1E-05 \pm 4.0E-06$	$2.4E-05 \pm 5.3E-06$	1.12 0.017*
Stearoylethanolamide	$9.2E-06 \pm 2.5E-06$	$1.0E-05 \pm 2.6E-06$	1.12 0.013*
Linoleylethanolamide	$8.4E-06 \pm 2.2E-06$	9.2E-06 ± 3.0E-06	1.09 0.265
Fatty acids and related			
metabolites			
Oleic acid	$1.2E-03 \pm 7.9E-04$	$1.8E-03 \pm 1.1E-03$	1.52 0.009**
Linoleic acid	$1.2E-03 \pm 7.9E-04$	$1.8E-03 \pm 1.1E-03$	1.47 0.017*
Linolenic acid	$4.6E-05 \pm 2.6E-05$	$6.2E-05 \pm 3.2E-05$	1.35 0.044*
Palmitoleic acid	$6.0E-05 \pm 5.1E-05$	8.0E-05 ± 5.6E-05	1.34 0.054
<i>cis</i> -4.7.10.13.16.19-	$3.8E-04 \pm 2.9E-04$	$5.8E-04 \pm 4.1E-04$	1.51 0.003**
Docosahexaenoic acid			
<i>cis</i> -5,8,11,14,17-	$3.2E-05 \pm 2.2E-05$	$4.4E-05 \pm 3.0E-05$	1.35 0.004**
Eicosapentaenoic acid			
cis-8,11,14-Eicosatrienoic acid	$1.1E-05 \pm 3.8E-06$	$1.5E-05 \pm 6.0E-06$	1.38 0.002**
cis-11.14-Eicosadienoic acid	$8.9E-06 \pm 5.4E-06$	$1.3E-05 \pm 8.1E-06$	1.46 0.007**
cis-11-Ficosenoic acid	1.5E-05+9.5E-06	2.1E-05 + 1.5E-05	1 44 0 014*
Arashidonia said	$1.0E 0.04 \pm 4.4E 0.05$	$2.1E 0.0 \pm 1.3E 0.05$	1.11 0.004**
Ethyl arashidanata	$2.5E_{0.05} \pm 2.1E_{0.05}$	$1.4E-04 \pm 7.1E-05$	1.41 0.004
	$2.5E-05 \pm 2.1E-05$	$3.5E-05 \pm 2.8E-05$	1.39 0.020*
Nervonic acid	$2.0E-06 \pm 9.5E-07$	$2.6E-06 \pm 8.1E-0/$	1.31 0.001**
Myristoleic acid	$2.3E-04 \pm 1.4E-04$	$2.1E-04 \pm 1.1E-04$	0.90 0.299
Ricinoleic acid	$7.7E-06 \pm 5.5E-06$	$1.0E-05 \pm 8.0E-06$	1.31 0.054
FA(22:5)	$2.6E-05 \pm 1.6E-05$	$3.8E-05 \pm 2.6E-05$	1.46 0.013*
FA(22:4)	$1.4E-05 \pm 1.3E-05$	$2.1E-05 \pm 1.8E-05$	1.46 0.014*
FA(20:3)	$4.1E-06 \pm 5.0E-06$	$5.6E-06 \pm 7.3E-06$	1.38 0.084
FA(19:1)	$3.3E-06 \pm 1.6E-06$	$4.4E-06 \pm 2.5E-06$	1.35 0.030*
FA(17:1)	$4.8E-06 \pm 3.1E-06$	$6.2E-06 \pm 3.7E-06$	1.30 0.067
FA(14:3)	$5.3E-06 \pm 2.4E-06$	$5.3E-06 \pm 2.6E-06$	0.99 0.967
FA(17:0)	$3.2E-06 \pm 1.4E-06$	$4.4E-06 \pm 2.0E-06$	1.37 0.004**
FA(14:0)	$1.0E-05 \pm 7.6E-06$	$1.3E-06 \pm 9.1E-06$	1.28 0.032**
Palmitic acid	$2.5E-04 \pm 1.3E-04$	$3.4E-04 \pm 1.8E-04$	1.36 0.019*
Stearic acid	$1.3E-04 \pm 4.9E-05$	$1.8E-04 \pm 8.0E-05$	1.45 0.003**
Hentadecanoic acid	4 3E-06 + 1 7E-06	6.0E-06 + 3.0E-06	1 41 0 008**
Lauric acid	$1.9E_{-}03 \pm 5.5E_{-}04$	$1.6E-03 \pm 4.0E-04$	0.84 0.008**
Decanoic acid	$7.2E 0.04 \pm 4.0E 0.04$	$5.1E.04 \pm 2.3E.04$	0.71 0.005**
Polargonia agid	$7.2E-04 \pm 4.0E-04$	$5.1E-04 \pm 2.3E-04$	0.71 0.003
	$9.2E-04 \pm 1.3E-04$	$0.4E-04 \pm 1.4E-04$	0.70 0.001**
	$4.6E-04 \pm 1.1E-04$	$3.2E-04 \pm 5.9E-05$	0.70 0.001**
Heptanoic acid	$7.2E-04 \pm 1.2E-04$	$4.0E-04 \pm 7.9E-05$	0.57 0.001**
Hexanoic acid	$9.0E-04 \pm 1.7E-04$	$5.6E-04 \pm 1.2E-04$	0.63 0.002**
Valeric acid	$1.2E-03 \pm 3.6E-04$	$6.4E-04 \pm 2.0E-04$	0.54 0.008**
2-Hydroxyvaleric acid	$1.8E-03 \pm 1.9E-03$	$1.9E-03 \pm 2.2E-03$	1.05 0.361
11-Aminoundecanoic acid	$1.7E-04 \pm 5.1E-05$	$1.7E-04 \pm 5.4E-05$	1.00 0.997
Acylcarnitines			
AC(20:1)	$9.4E-06 \pm 4.3E-06$	$9.1E-06 \pm 5.1E-06$	0.97 0.767
AC(20:0)	$5.4E-06 \pm 2.1E-06$	$4.8E-06 \pm 1.2E-06$	0.89 0.366
AC(18:2)	8.0E-05 ± 3.0E-05	5.9E-05 ± 9.2E-06	0.74 0.039*
AC(18:1)	$1.7E-04 \pm 6.9E-05$	$1.5E-04 \pm 5.6E-05$	0.85 0.178
AC(18:0)	$4.9E-05 \pm 1.9E-05$	$4.3E-05 \pm 1.3E-05$	0.87 0.270
AC(16:2)	$7.5E-06 \pm 3.6E-06$	$4.3E-06 \pm 2.0E-06$	0.60 0.003**
AC(16:1)	$2.8E-05 \pm 1.3E-05$	$1.9E-05 \pm 1.1E-05$	0.69 0.008**
Palmitovlcarnitine	$1.1E-04 \pm 4.5E-05$	$8.5E-05 \pm 1.5E-05$	0.76 0.112
$\Delta C(14.2)$	$3.0E_{-}05 + 1.0E_{-}05$	$1.3E_{-}05 \pm 5.3E_{-}05$	0.44 0.008**
$\frac{AC(14.2)}{AC(14.0)}$	$1.9E 05 \pm 0.6E 07$	$1.5E-05 \pm 3.5E-00$	0.63 0.010*
AC(14.0)	$1.0E-00 \pm 0.0E-00$	$1.1E-0.5 \pm 4.9E-0.05$	0.05 0.019*
AC(13.1)	$4.3E-03 \pm 4.6E-03$	$5.1E-05 \pm 2.9E-05$	0.09 0.054
AC(12:1)	$2.5E-05 \pm 2.1E-05$	$9.1E-06 \pm 4.8E-06$	0.36 0.015*
AC(12:0)	$3.2E-05 \pm 2.3E-05$	$1.1E-05 \pm 5.7E-06$	0.35 0.007**
Carnitine	$2.7E-02 \pm 5.5E-03$	$2.7E-02 \pm 5.5E-03$	1.01 0.614
O-Acetylcarnitine	$8.4E-03 \pm 1.5E-03$	$8.2E-03 \pm 1.8E-03$	0.98 0.744

Phospholipids and relative me	tabolites			
Sphingosine	$2.9E-05 \pm 8.5E-06$	$3.7E-05 \pm 2.0E-05$	1.26	0.168
Ethanolamine phosphate	$4.9E-04 \pm 1.8E-04$	$4.8E-04 \pm 2.3E-04$	0.98	0.848
Ethanolamine	$8.5E-04 \pm 1.7E-04$	$8.3E-04 \pm 1.7E-04$	0.98	0.586
Glycerol	$9.6E-02 \pm 3.7E-02$	$9.6E-02 \pm 2.3E-02$	1.01	0.962
Nucleic acids and related meta	abolites			
ATP	$6.7E-04 \pm 3.0E-04$	$7.2E-04 \pm 3.0E-04$	1.07	0.716
ADP	$8.8E-04 \pm 3.5E-04$	$1.0E-03 \pm 4.2E-04$	1.17	0.316
AMP	$2.2E-04 \pm 1.9E-04$	$2.6E-04 \pm 1.4E-04$	1.15	0.618
GDP	$1.0E-04 \pm 3.9E-05$	$1.2E-04 \pm 5.4E-05$	1.14	0.341
UDP	$5.2E-05 \pm 2.0E-05$	$6.7E-05 \pm 2.8E-05$	1.30	0.040*
IDP	$6.1E-03 \pm 4.6E-04$	$6.2E-03 \pm 6.2E-04$	1.01	0.788
Uric acid	$2.8E-02 \pm 5.9E-03$	$2.9E-02 \pm 7.2E-03$	1.02	0.185
Uridine	$8.6E-04 \pm 1.7E-04$	8.0E-04 ± 1.7E-04	0.93	0.310
8-Hydroxy-2'-deoxyguanine	$5.7E-04 \pm 3.6E-04$	$6.6E-04 \pm 4.1E-04$	1.15	0.541
Pyrophosphate	$9.8E-04 \pm 1.7E-04$	$1.1E-03 \pm 1.1E-04$	1.10	0.096
1-Methylnicotinamide	$1.2E-04 \pm 5.9E-05$	$1.2E-04 \pm 7.0E-05$	1.02	0.793
Tricarboxylic acid cycle interr	nediates and relativ	e metabolites		
Citric acid	$1.9E-02 \pm 2.9E-03$	$2.0E-02 \pm 2.9E-03$	1.07	0.066
Isocitric acid	$1.0E-03 \pm 2.9E-04$	$1.0E-03 \pm 2.8E-04$	1.03	0.414
Lactic acid	$9.9E-02 \pm 5.4E-03$	$1.0E-01 \pm 3.8E-02$	1.05	0.716
Succinic acid	$5.4E-04 \pm 1.4E-04$	$5.3E-04 \pm 8.1E-05$	0.98	0.731
Pyruvic acid	$2.8E-03 \pm 1.1E-03$	$2.7E-03 \pm 9.8E-04$	0.97	0.738
Malic acid	$7.8E-04 \pm 2.0E-04$	$7.4E-02 \pm 2.1E-04$	0.95	0.482
cis-Aconitic acid	$1.1E-03 \pm 2.9E-04$	$1 1E-03 \pm 2.9E-04$	0.99	0.811
Urea cycle	1.12 05 = 2.52 01	1.12 05 = 2.52 01	0.77	0.011
Ornithine	$1.1E-02 \pm 4.2E-03$	$9.9E-03 \pm 3.5E-03$	0.93	0.234
Citrulline	$5.7E-03 \pm 1.2E-03$	$5.8E-03 \pm 1.3E-03$	1.01	0.450
Urea	$4.3E-01 \pm 6.9E-02$	$4.2E-01 \pm 8.2E-02$	0.99	0.717
Arg	$2.9E-02 \pm 8.7E-03$	$2.8E-02 \pm 8.1E-03$	0.97	0.605
Guanidoacetic acid	$8.4E-04 \pm 3.6E-04$	$7.8E-04 \pm 2.9E-04$	0.93	0.089
Glyceric acid	$1.2E-03 \pm 2.5E-04$	$1.1E-03 \pm 2.7E-04$	0.89	0.056
Amino acids and related meta	bolites	1		
Ala	$8.6E-02 \pm 3.1E-02$	$7.7E-02 \pm 2.5E-02$	0.90	0.016*
β-Ala	$5.8E-04 \pm 2.2E-04$	$5.5E-04 \pm 1.6E-04$	0.94	0.331
Asn	$7.4E-03 \pm 1.4E-03$	$7.2E-03 \pm 1.3E-03$	0.97	0.307
Asp	$1.6E-03 \pm 4.5E-04$	$1.5E-03 \pm 4.7E-04$	0.99	0.866
Tyr	$1.9E-02 \pm 3.8E-03$	$1.8E-02 \pm 4.2E-03$	0.92	0.033*
Phe	$3.1E-02 \pm 4.1E-03$	$2.9E-02 \pm 3.4E-03$	0.91	0.013**
Trp	$2.1E-02 \pm 2.9E-03$	$1.9E-02 \pm 2.6E-03$	0.90	0.002**
Lys	$5.6E-02 \pm 1.1E-02$	$5.5E-02 \pm 1.1E-02$	0.98	0.531
Ile	$4.4E-02 \pm 1.4E-02$	$4.0E-02 \pm 9.9E-03$	0.90	0.090
Met	$6.2E-03 \pm 1.6E-03$	$5.1E-03 \pm 1.4E-03$	0.82	0.023*
Cystine	$2.3E-03 \pm 7.2E-04$	$1.7E-03 \pm 6.5E-04$	0.77	0.038*
Leu	$8.3E-02 \pm 2.1E-02$	$7.6E-02 \pm 1.4E-02$	0.92	0.131
His	$2.2E-02 \pm 2.8E-03$	$2.2E-02 \pm 2.6E-03$	0.99	0.799
Thr	$2.8\text{E-}02 \pm 9.8\text{E-}03$	$2.8E-02 \pm 9.9E-03$	0.98	0.529
Val	$1.1E-01 \pm 2.1E-02$	$1.1E-01 \pm 1.8E-02$	0.96	0.282
Ser	$1.6E-02 \pm 5.4E-03$	$1.6E-02 \pm 5.2E-03$	1.02	0.571
Glu	$3.4E-02 \pm 2.1E-02$	$3.6E-02 \pm 2.0E-02$	1.05	0.343
Gln	1.1E-01 ± 3.2E-02	$1.1E-01 \pm 3.0E-02$	1.02	0.602
Gly	3.1E-02 ± 8.5E-03	$3.1E-02 \pm 9.1E-03$	1.00	0.952
Pro	$6.8E-02 \pm 2.4E-02$	$6.5E-02 \pm 2.2E-02$	0.95	0.115
		$2.7E_{0.03} + 1.7E_{0.03}$	0.95	0.042*
Hydroxyproline	$2.9E-03 \pm 1.7E-03$	$2.10-05 \pm 1.10-05$		
Hydroxyproline 5-Oxoproline	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$	$2.9E-03 \pm 3.9E-03$	1.62	0.390
Hydroxyproline 5-Oxoproline Taurine	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$	$2.9E-03 \pm 3.9E-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$	1.62 0.95	0.390
Hydroxyproline 5-Oxoproline Taurine Hypotaurine	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$ $4.2E-04 \pm 1.3E-04$	$2.9E-03 \pm 1.1E-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$ $4.0E-04 \pm 9.6E-05$	1.62 0.95 0.94	0.390 0.524 0.527
Hydroxyproline 5-Oxoproline Taurine Hypotaurine Isethionic acid	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$ $4.2E-04 \pm 1.3E-04$ $1.8E-04 \pm 2.2E-05$	$2.72-03 \pm 1.72-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$ $4.0E-04 \pm 9.6E-05$ $1.9E-04 \pm 2.8E-05$	1.62 0.95 0.94 1.08	0.390 0.524 0.527 0.040*
Hydroxyproline 5-Oxoproline Taurine Hypotaurine Isethionic acid Kynurenine	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$ $4.2E-04 \pm 1.3E-04$ $1.8E-04 \pm 2.2E-05$ $4.3E-04 \pm 1.2E-04$	$2.9E-03 \pm 1.7E-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$ $4.0E-04 \pm 9.6E-05$ $1.9E-04 \pm 2.8E-05$ $3.9E-04 \pm 8.9E-05$	1.62 0.95 0.94 1.08 0.92	0.390 0.524 0.527 0.040* 0.109
Hydroxyproline 5-Oxoproline Taurine Hypotaurine Isethionic acid Kynurenine Sarcosine (<i>N</i> -methylolycine)	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$ $4.2E-04 \pm 1.3E-04$ $1.8E-04 \pm 2.2E-05$ $4.3E-04 \pm 1.2E-04$ $4.4E-04 \pm 1.2E-04$	$2.7E-03 \pm 1.7E-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$ $4.0E-04 \pm 9.6E-05$ $1.9E-04 \pm 2.8E-05$ $3.9E-04 \pm 8.9E-05$ $4.0E-04 \pm 1.3E-04$	1.62 0.95 0.94 1.08 0.92 0.90	0.390 0.524 0.527 0.040* 0.109 0.036*
Hydroxyproline 5-Oxoproline Taurine Hypotaurine Isethionic acid Kynurenine Sarcosine (<i>N</i> -methylglycine) <i>N N-</i> Dimethylglycine	$2.9E-03 \pm 1.7E-03$ $1.8E-03 \pm 4.1E-04$ $5.6E-03 \pm 1.7E-03$ $4.2E-04 \pm 1.3E-04$ $1.8E-04 \pm 2.2E-05$ $4.3E-04 \pm 1.2E-04$ $4.4E-04 \pm 1.2E-04$ $1.0E-03 \pm 1.7E-04$	$2.7E-03 \pm 1.7E-03$ $2.9E-03 \pm 3.9E-03$ $5.3E-03 \pm 1.5E-03$ $4.0E-04 \pm 9.6E-05$ $1.9E-04 \pm 2.8E-05$ $3.9E-04 \pm 8.9E-05$ $4.0E-04 \pm 1.3E-04$ $9.8E-04 \pm 2.3E-04$	1.62 0.95 0.94 1.08 0.92 0.90 0.97	0.390 0.524 0.527 0.040* 0.109 0.036* 0.289

N-Acetylglycine	$1.6E-04 \pm 3.4E-05$	$1.8E-04 \pm 4.6E-05$	1.14	0.026*
N-Acetylalanine	$1.7E-04 \pm 1.6E-05$	$1.9E-04 \pm 2.7E-05$	1.14	0.027*
N ⁶ -Metyllysine	$8.3E-04 \pm 4.7E-04$	$8.3E-04 \pm 5.3E-04$	1.00	0.901
S-Metylcysteine	$9.2E-04 \pm 3.1E-04$	8.7E-04 ± 2.9E-04	0.94	0.117
3-Metylhistidine	$2.9E-03 \pm 2.2E-03$	$2.6E-03 \pm 2.0E-03$	0.93	0.091
2-Aminobutyric acid	$5.9E-03 \pm 2.0E-03$	$6.0E-03 \pm 2.1E-03$	1.02	0.518
3-Aminobutyric acid	$1.2E-04 \pm 3.4E-05$	$1.2E-04 \pm 2.7E-05$	0.99	0.928
3-Aminoisobutyric acid	$5.7E-04 \pm 3.6E-04$	$5.9E-04 \pm 3.7E-04$	1.03	0.242
4-Methyl-2-oxovaleric acid	$1.1E-02 \pm 3.8E-03$	$1.1E-02 \pm 3.1E-03$	0.96	0.424
5-Methoxyindoleacetic acid	$1.3E-04 \pm 4.2E-05$	$1.2E-04 \pm 5.2E-05$	0.94	0.204
2 Overigevelorie egid	$1.6E-04 \pm 0.5E-05$	$1.5E-04 \pm 5.0E-05$	0.91	0.104
2-Oxolsovaletic acid	$1.0E-03 \pm 3.8E-04$	$1.0E-03 \pm 3.2E-04$ 1.7E 04 ± 3.2E 05	0.06	0.999
2-Annioaulpic acid	$1.8E-04 \pm 4.1E-03$ 1.7E 04 + 7.0E 05	$1.7E-04 \pm 3.3E-03$ 1.8E 04 ± 8.0E 05	1.06	0.304
Pipecolic acid	$1.7E-04 \pm 7.0E-03$ 8 1E-04 + 4 0E-04	$7.7E-04 \pm 3.8E-04$	0.96	0.251
Hippuric acid	$5.4E-04 \pm 4.0E-04$	$4.6E-04 \pm 3.3E-04$	0.90	0.0278
Methionine sulfoxide	$5.4E-04 \pm 1.8E-04$	$5.4E-04 \pm 1.6E-04$	0.00	0.893
Sufotyrosine	$7.4E-0.5 \pm 2.3E-0.5$	$6.8E-05 \pm 1.8E-05$	0.92	0.565
Creatine	$1.3E-02 \pm 7.0E-03$	$1.2E-02 \pm 5.6E-03$	0.93	0.218
Creatinine	$2.1E-02 \pm 4.5E-03$	$2.1E-02 \pm 4.3E-03$	0.99	0.671
Phosphocreatine	8.7E-05 ± 2.6E-05	$1.0E-04 \pm 2.3E-05$	1.16	0.047*
Phosporylcholine	$3.0E-04 \pm 7.7E-05$	3.0E-04 ± 8.1E-05	1.00	0.999
Glycerophosphocholine	$3.3E-04 \pm 1.2E-04$	$3.0E-04 \pm 8.9E-05$	0.89	0.362
Choline	6.5E-03 ± 1.3E-03	$6.4E-03 \pm 1.3E-03$	0.99	0.776
Betaine	$2.3E-02 \pm 4.6E-03$	$2.3E-02 \pm 4.8E-03$	0.99	0.642
γ-Butyrobetaine	$8.2E-04 \pm 1.4E-04$	$7.8E-04 \pm 1.5E-04$	0.95	0.046*
2-Hydroxyglutaric acid	$1.5E-04 \pm 5.3E-05$	$1.7E-04 \pm 4.2E-05$	1.10	0.365
Bile acids		1		
Deoxycholic acid	$5.9E-05 \pm 4.4E-05$	$5.5E-05 \pm 4.1E-05$	0.93	0.413
Chenodeoxycholic acid	$4.1E-05 \pm 4.9E-05$	$3.6E-05 \pm 4.7E-05$	0.87	0.101
Taurodeoxycholic acid	$8.7E-06 \pm 9.4E-06$	$5.5E-06 \pm 6.2E-06$	0.63	0.110
Taurochenodeoxycholic acid	$1.4\text{E-05} \pm 1.1\text{E-05}$	$8.3E-06 \pm 6.5E-06$	0.60	0.066
Glycochenodeoxycholic acid	$8.8E-05 \pm 6.0E-05$	$5.7E-05 \pm 3.8E-05$	0.65	0.046*
Glycodeoxycholic acid	$2.9E-05 \pm 2.2E-05$	$2.1E-05 \pm 1.6E-05$	0.73	0.120
Glycoursodeoxycholic acid	$1.2E-05 \pm 1.1E-05$	9.3E-06 ± 7.4E-06	0.78	0.313
Steroids and related metabolit	es	l		
Cortisol	8.0E-05 ± 3.3E-05	$7.3E-05 \pm 2.3E-05$	0.91	0.371
Cortisone	$1.9E-05 \pm 6.8E-06$	$1.9E-05 \pm 5.7E-06$	1.00	0.963
Pregnenolone sulfate	$3.1E-05 \pm 1.1E-05$	2 9E-05 ± 8 8E-06	0.94	0.386
Cholesterol sulfate	5 9E-05 + 1 5E-05	5.4F-05 + 1.5F-05	0.93	0.023*
Cholesterol	1.2E-03 + 2.8E-04	1 1E-03 + 3 3E-04	0.87	0.290
7 Dehydrocholesterol	$9.5E.06 \pm 2.0E.06$	8 8E 06 ± 2 2E 06	0.07	0.578
Dehydroisoandrosterone 3 sulfate	$1.0E_{-00} \pm 2.0E_{-00}$	$1.1E_{0.0} + 2.8E_{0.0}$	1.08	0.00/**
Etiocholon 2g ol 17 ono	$7.1E.06 \pm 3.7E.06$	$7.0E.06 \pm 2.8E.06$	1.00	0.059
Etiocholan-Su-ol-17-one	$7.1E-00 \pm 3.7E-00$	$7.9E-00 \pm 3.8E-00$	1.12	0.038
	$3.0E-04 \pm 2.4E-04$	$5.5E-00 \pm 2.5E-04$	1.07	0.034
	2 45 04 + 7 15 05	2 (E 04) ((E 05	1.05	0.240
Gluconic acid	$3.4E-04 \pm 7.1E-05$	$3.6E-04 \pm 6.6E-05$	1.05	0.348
Mucic acid	$1.2E-04 \pm 3.8E-05$	$1.2E-04 \pm 3.2E-05$	1.02	0.635
Threonic acid	$1.9E-03 \pm 1.2E-03$	$2.2E-03 \pm 1.3E-03$	1.15	0.014*
Trimethylamine N-oxide	1.3E-03 ± 5.8E-04	$1.2E-03 \pm 5.5E-04$	0.91	0.097
Indole-3-carboxaldehyde	$1.9E-05 \pm 6.1E-06$	$2.0E-05 \pm 5.1E-06$	1.06	0.295
3-Indoxysulfuric acid	$5.7E-04 \pm 2.9E-04$	$5.8E-04 \pm 3.3E-04$	1.03	0.631
α-Tocopherol	$2.6E-04 \pm 1.0E-04$	$2.4\text{E-}04 \pm 8.2\text{E-}05$	0.94	0.405
2-Hydroxybutyric acid	$3.2E-03 \pm 1.4E-03$	$4.4E-03 \pm 2.1E-03$	1.40	0.002**
3-Hydroxybutyric acid	$4.8E-03 \pm 7.2E-03$	6.4E-03 ± 8.3E-03	1.32	0.099
* Indicates a significant differen	ce (* <i>p</i> <0.05, ** <i>p</i> <0.	01, <i>t</i> -test).	-	

Figure 2. View of the conformation of OEA docked in the PPAR- α active site. (a) Binding mode of AZ242 in PPAR- α . (b) Binding mode of OEA in PPAR- α .

In particular, genes associated with lipid metabolic process exhibited significant changes in response to OEA treatment (Table 2).

Because FAT/CD36, acyl-CoA synthetase long-chain family member 3 (ACSL3), and ACOX1 are PPARa-responsive genes, we next confirmed the effect of OEA (10 μ M) on the target proteins at the mRNA level by qRT-PCR. qRT-PCR showed increased expression of about 1.65-fold, 1.51-fold, 1.54-fold and 1.88-fold for FAT/CD36, ACSL3, HDLBP, and ACOX1, respectively (Figure 3a-d). We further evaluated whether the PPAR- α antagonist GW6471 or the PPAR- γ/α antagonist GW9662 attenuated the effect of OEA-stimulated ACOX1 expression. OEA (10 μ M) -stimulated ACOX1 response was almost completely abolished by 10 μ M GW9662 or 10 μ M GW6471 (Figure 3e). To determine the possible effects of OEA on specificity against PPAR, we next examined the effect of OEA on the gene expression of PPAR- α or PPAR- γ . OEA (10 μ M) treatment produced about a 1.6-fold increase when measured by qRT-PCR (Figure 3f). In contrast, PPAR- γ had no effect (Figure 3g).

Discussion

The results of the present study clearly indicate that plasma fatty acids in healthy human subjects are sensitive to acute EF exposure. Interestingly, 60% or more of significant increase following EF exposure was fatty acid family in plasma. In contrast, about 30% of significant decrease following EF exposure was acylcarnitine family in plasma. It is notable that EF exposure did not seem to adversely alter physiological parameters of the healthy volunteers, at least in terms of citric acid or ornithine cycles. Moreover, a stress-responsive hormone cortisol was not affected by EF exposure. Our findings also clarified that EF exposure elicits an increase in plasma OEA, a fatty acid ethanolamide. In contrast, LoVerme et al. reported that cold exposure increased the OEA content in white adipose tissue, but not plasma [22]. Therefore, it is possible that the physiology differs is different between cold exposure and EF exposure. On the other hand, Fu et al. have reported that 24-h food deprivation induced an increase in the OEA levels in the plasma (1.34-fold), liver (1.69-fold), and white adipose tissue (1.24-fold) of rats [23]. The results of the present study showed that EF exposure induced a 1.24-fold increase in human plasma OEA levels. OEA is reportedly an endogenous ligand of the nuclear receptor PPAR-a that induces lipolysis [14,20,21]. Therefore, the increase in fatty acid levels of healthy human plasma observed in this study was reasonable. At present, it

Accession no.	Gene symbol	Gene description	Fold change
Lipid metabolic process			
Up-regulated gene			
NM_002732	PRKACG	protein kinase, cAMP-dependent, catalytic, gamma	8.04
NM_001243900	HDLBP	high density lipoprotein binding protein	6.00
NM_000949	PRLR	prolactin receptor	5.43
NM_001204051	SLC25A27	solute carrier family 25, member 27	5.21
NM_022898	BCL11B	B-cell CLL/lymphoma 11B	5.09
NM_000198	HSD3B2	hydroxy-delta-5-sterold dehydrogenase, 3 beta- and steroid delta-isomerase	4.88
NM_002649	PIK3CG	phosphoinositide-3-kinase, catalytic, gamma polypeptide	4.60
NM_004457	ACSL3	acyl-CoA synthetase long-chain family member 3	4.29
NM_018327	SPTLC3	serine palmitoyltransferase, long chain base subunit 3	3.89
NM_002011	FGFR4	fibroblast growth factor receptor 4	3.84
NM_001098537	PNPLA7	patatin-like phospholipase domain containing 7	3.82
NM_001127178	PIGG	phosphatidylinositol glycan anchor biosynthesis, class G	3.73
NM_030791	SGPP1	sphingosine-1-phosphate phosphatase 1	3.55
NM_007253	CYP4F8	cytochrome P 450, family 4, subfamily F, polypeptide 8	3.45
NM_024419	PGS1	phosphatidylglycerophosphate synthase 1	3.10
NM_203347	LCN15	lipocalin 15	3.04
NM 001040442	FABP6	fatty acid binding protein 6, ileal	2.79
NM 000778	CYP4A11	cytochrome P 450, family 4, subfamily A, polypeptide 11	2.75
 NM 001185039	ACOX1	acyl-CoA oxidase 1, palmitoyl	2.70
 NM 018667	SMPD3	sphingomyelin phosphodiesterase 3, neutral membrane	2.64
 NM 014602	PIK3R4	phosphoinositide-3-kinase regulatory subunit 4	2.51
NM 015879	ST8SIA3	ST8 alpha-N-acetyl-neuraminide alpha-2.8-sialvltransferase 3	2.40
NM 024870	PREX2	phosphatidylinositol-3.4.5-triphosphate-dependent Raexchange factor 2	2.16
NM 012400	PLA2G2D	phospholipase A2. group IID	2.16
NM_005050	ABCD4	ATP-binding cassette sub-family D member 4	2.08
NM 001127458	CRUSI	cardiolinin synthase 1	1 74
NM 198531	ATP9B	ATPase class II type 9B	1.71
NM 001144772	NSMAF	neutral sphingomyelinase activation associated factor	1.69
NM_001144382	PLCL2	nhosphalinger C-like 2	1.61
NM_000072	CD36	fatty acid translocase/CD36	1.51
Down-regulated genes	CD30		1.50
NM 001756	SEPDINA6	sernin pentidase inhibitor clade A member 6	0.14
NM_000545		HNE1 homoshow A	0.14
NM_024586		ovysterol binding protein like 0	0.15
NM_001821	CLU	alustorin	0.10
NM_022060		abbudralasa domain containing 4	0.10
NM_022000	B3GNT5	UDP GloNA c:betaGal beta 1.3 N acetylglucosaminyltransferase 5	0.19
NM 152242		otopualactida puranhagnhagnhagnhadiagtaraga 6	0.19
NM_155545	CDVI 1	arratellin landa 1	0.25
NM_013974		crystanni, ianda i	0.23
NM_000530	LIPLAI	DDUD demain containing 1	0.28
NM_001160147	DDHDI		0.39
NM_153240	NPHP3	nephronophtnisis 3 (adolescent)	0.44
NM_003080	SMPD2	sphingomyelin phosphodiesterase 2, neutral membrane	0.45
NM_016466	ANKRD23	ankyrin repeat domain 23	0.54
NM_001039667	ANGPTL4	angiopoietin-like 4	0.55
NM_016174	CERCAM	cerebral endothelial cell adhesion molecule	0.56
NM_001101667	ACOX3	acyl-CoA oxidase 3, pristanoyl	0.58
NM_003702	PPAP2A	phosphatidic acid phosphatase type 2A	0.59
NM_001143835	NFRKB	nuclear factor related to kappa B binding protein	0.62
NM_003105	SORL1	sortilin-related receptor, L (DLR class) A repeats containing	0.64

Fold changes relative to vehicle-treated cells. Genes were differentially transcribed at p < 0.05 (t-test).

remains unclear whether the increase in plasma OEA was controlled individually or collectively by the liver, intestine, and adipose tissues.

The changes in OEA levels that were observed following EF exposure are complex and can be interpreted in several ways. Voltage-

sensing is reportedly coupled to protein phosphatase which is an enzyme responsible for the generation of arachidonoyl ethanolamide (anandamide) from its phosphorylated precursor [22-25]. Thus, the increase in OEA after exposure of EF is conceivable. However,

Figure 3. Effect of OEA on gene expression in human white adipocytes. qRT-PCR analysis of FAT/CD36 (a), ACSL3 (b), HDLBP (c), ACOX1 (d), PPAR α (f), and PPAR- γ (g) mRNA in human adipocytes treated with 10 μ M OEA for 24 h. * Indicates a significant difference (*p < 0.05, **p < 0.01, *t*-test) between the OEA (10 μ M)- and the vehicle (0.1 % DMSO)-treated cells. (e) The effect of GW6471 on OEA-induced activation of ACOX1 expression in human adipocytes. GW9662 (10 μ M) or GW6471 (10 μ M) was added to cultured cells 30 min prior to and during OEA (10 μ M) incubation (24 h). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was included as an internal control. Results are presented means ± SEMs (n = 3).

it remains unclear whether similar voltage-sensitive phosphatases might be involved in OEA production. It will be of interest to assess phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor in human tissue in the regulated synthesis of the fatty acid amide OEA in a future study.

In the present study, OEA binding to PPAR- α was stabilized through the formation of hydrogen bouds with Ser280, Tyr314, and Phe273, whereas a previous study reported hydrogen bounding with Ser280 and His440 [26]. This apparent discrepancy may have resulted from differences in model systems; e.g., 1i7g (crystal structure of the ligand binding domain from human PPAR- α in complex with the agonist AZ242) versus 1k7l (crystal structure of the human PPAR- α ligand binding domain bound with GW409544 and a co-activator peptide) [26].

Another goal of the present study was to gain insights into the genetic components affected by OEA through a large-scale analysis of gene expression analysis. In human white subcutenous adipocytes, FAT/CD36, ACSL3, HDLBP, ACOX1, and PPAR- α were upregulated in response to OEA. In contrast to PPAR- α , PPAR- γ had no effect. ACOX1, CYP4A11, ACSL3, and FAT/CD36 are reportedly involved in lipid metabolism genes induced by a PPAR- α agonist [27]. Guzman *et al.* reported an increased gene expression of FAT/CD36, fatty acid-binding protein, uncoupling protein-2, and PPAR- α in the adipose tissue of rats after OEA administration [22]. In our study, the response of OEA on ACOX1 mRNA expression was inhibited by the PPAR- α antagonist GW6471. Thus, the stimulation of human adipocytes with OEA might involve, at least in part, the PPAR- α signaling cascade.

An experimental pretest-posttest design study by Sirikulchayanonta *et al.* found that EF exposure (30 min/day for 30 days) reduced low

density lipoprotein cholesterol (LDL-C) levels and increased high density lipoprotein cholesterol (HDL-C) levels in the serum of 41 middle-aged patients [6]. It is reasonable to speculate that repetitive stimulation with OEA might alleviate abnormal levels of LDL-C and HDL-C through the PPAR- α nuclear receptor-mediated pathway in humans. Yanamoto *et al.* recently reported that EF treatment for 12 months reduced the body weight of human volunteers [28]. Although repetitive EF treatment was not performed in the present study, EF therapy may induce weight loss in humans, at least in part, through the activation of the PPAR- α signaling pathway by OEA. Therefore, further studies are warranted to elucidate whether the EF-induced OEA-dependent signaling pathway might affect potential therapeutic intervention.

OEA might have additional functions as an agonist or activator against the transient receptor potential vanilloid type-1 (TRPV1), GPR119, or GPR55 [29-34]. However, further studies are needed to elucidate whether the OEA-dependent signaling pathway induced by EF exposure might affect the alleviation of circadian rhythm sleep disorders and inflammatory pain [35,36].

In conclusions, acute EF exposure induced notable effects on plasma OEA levels in healthy subjects. In human subcutaneous adipocytes, ACOX1 gene expression induced by OEA was sensitive to the PPAR- α antagonist GW6471. Our findings not only provide a clear example to understand the molecular mechanisms of health merit induced by EF therapy, but might also be important to the development of alternative medicine therapies and electroceuticals.

Competing Interests

YN-Y, HH and AH are employed by Hakuju Institute for Health Science Co., Ltd., TF is employed by Human Metabolome Technologies Inc., TY is employed by Acel Inc., and AM is employed by World Fusion Co., Ltd. All other authors have no competing interests.

Authors' Contributions

YN-Y designed and supervised the research, and wrote the manuscript. YN-Y, HH, and AH performed the EF exposure and biochemical experiments. TF performed the metabolome analysis. TY performed the GeneChip experiment. AM performed the molecular modeling. All authors read and approved the final version of the manuscript.

Acknowledgement

We are grateful to Dr. Makoto Kikuchi (Professor Emeritus, National Defence Medical College, Japan) for encouragement. We thank Katherine Nixon who provided medical writing services on behalf of Enago Crimson Interactive Pvt. Ltd.

References

- 1. Kimura R (1988) The effect of high-intensity electric-field exposure on lipid peroxidation in blood and organs in rats. *Electromagnetic Biol Med* 7: 77-88.
- Harakawa S, Takahashi I, Doge F, Martin DE (2004) Effect of a 50 Hz electric field on plasma ACTH, glucose, lactate, and pyruvate levels in stressed rats. *Bioelectromagnetics* 25: 346-351. [Crossref]
- Hori T, Harakawa S, Herbas SM, Ueta YY, Inoue N, et al. (2012) Effect of 50 Hz electric field in diacylglycerol acyltransferase mRNA expression level and plasma concentration of triacylglycerol, free fatty acid, phospholipid and total cholesterol. *Lipids in Health and Disease* 31: 68. [Crossref]
- 4. Hara H (1961) On the effect of AC. electrostatic high voltage potential load upon the blood-electrolytes (in Japanese). *Niigata Medical J* 75: 265 -273.
- Ito F, Furuya K (1981) The effect of high voltage alternating current upon a human body the change of blood pressure, endocrine system and serum lipids (in Japanese). J Jpn Sci Balneol Climatol Phys Med 45: 6-17.
- 6. Sirikulchayanonta C et al. (2001) The effect of Healthtron on serum lipid levels among the middle-aged: Preliminary report. *J Public Health (Bangkok)* 31: 63-70.
- Ito F (2000) The role of electric field therapeutic device (Healthtron) in the therapy of acute low back pain (in Japanese). J Jpn Sci Balneol Climatol Phys Med 63: 127-137.
- 8. Shinba T et al. (2012) A pilot study on electric field therapy for chronic pain with no obvious underlying diseases (in Japanese). *Soc Integrative Med Jpn* 5: 68-72.
- Naito Y, Yamaguchi S, Mori Y, Nakajima K, Hashimoto S, et al. (2013) A randomized, double-blind, sham-controlled study of static electric field therapy by high voltage alternating current for active rheumatoid arthritis. J Clin Biochem Nutr 53: 63-67. [Crossref]
- Astarita G, Piomelli D (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877: 2755-2767. [Crossref]
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomic identified oral, breast and pancreatic cancer-specific profiles. *Metabolomics* 6: 78-95. [Crossref]
- Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, et al. (2011) The human serum metabolome. *PLoS One* 6: e16957. [Crossref]
- Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, et al. (2012) Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. *Nat Chem Biol* 8: 232-234.[Crossref]
- Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, et al. (2003) Oleoylethanolamide regulates feeding and body weight through activation of the nuclear PPAR-α. *Nature* 425: 90-93. [Crossref]

- Isaka K. et al. (1998) Dosimetry and exposure experiments for extremely low frequency high-tension electric field therapy. EMC'98 Rome International Symposium on Electromagnetic Compatibility D: 204-207.
- Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. *Anal Chem* 72: 1236-1241. [Crossref]
- Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, et al. (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. *J Proteome Res* 2: 488-494. [Crossref]
- Cronet P, Petersen JF, Folmer R, Blomberg N, Sjöblom K, et al. (2001) Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. *Structure* 9: 699-706. [Crossref]
- Nakagawa-Yagi Y, Sato Y, Matsumoto E, Nakatsuka S, Sakaki T, et al. (2012) Pharmacological modulation of histone demethylase activity by a small molecule isolated from subcritical water extracts of Sasa senanensis leaves prolongs the lifespan of Drosophila melanogaster. *BMC Complement Altern Med* 12: 101. [Crossref]
- Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, et al. (2004) Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem 279: 27849-27854. [Crossref]
- Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D (2005) Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. *Neuropharmacology* 48: 1147-1153. [Crossref]
- LoVerme J, Guzmán M, Gaetani S, Piomelli D (2006) Cold exposure stimulates synthesis of the bioactive lipid oleoylethanolamide in rat adipose tissue. *J Biol Chem* 281: 22815-22818. [Crossref]
- Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, et al. (2007) Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. *J Biol Chem* 282: 1518-1528. [Crossref]
- Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. *Nature* 435: 1239-1243. [Crossref]
- Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, et al. (2006) A biosynthetic pathway for anandamide. *Proc Natl Acad Sci U S A* 103: 13345-13350. [Crossref]
- 26. Decara JM, Romero-Cuevas M, Rivera P, Macias-González M, Vida M, et al. (2012) Elaidyl-sulfamide, an oleoylethanolamide-modelled PPAR-α agonist, reduces body weight gain and plasma cholesterol in rats. *Dis Model Mech* 5: 660-670. [Crossref]
- Kane CD, Stevens KA, Fischer JE, Haghpassand M, Royer LJ, et al. (2009) Molecular characterization of novel and selective peroxisome proliferator-activated receptor-α agonists with robust hypolipidemic activity in vivo. *Mol Pharmacol* 75: 296-306. [Crossref]
- Yanamoto H, Nakajo Y, Kataoka H, Iihara K (2013) High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain. *Front Neurol Neurosci* 32: 129-138. [Crossref]
- Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. *J Biol Chem* 278: 30429-30434. [Crossref]
- AlSuleimani YM, Hiley CR (2013) Mechanisms of vasorelaxation induced by oleoylethanolamide in the rat small mesenteric artery. *Eur J Pharmacol* 702: 1-11. [Crossref]
- Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, et al. (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. *Cell Metabolism* 3: 167-175. [Crossref]
- Suardíaz M, Estivill-Torrús G, Goicoechea C, Bilbao A, Rodríguez de Fonseca F (2007) Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. *Pain* 133: 99-110. [Crossref]
- Lauffer LM, Iakoubov R, Brubaker PL (2009) GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. *Diabetes* 58: 1058-1066. [Crossref]

- Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, et al. (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. *Br J Pharmacol* 152, 1092-1101. [Crossref]
- 35. Shirai H, Oishi K, Kudo T, Shibata S, Ishida N (2007) PPARalpha is a potential

therapeutic target of drugs to treat circadian rhythm sleep disorders. *Biochem Biophys Res Commun* 357: 679-682. [Crossref]

 Suardíaz M, Estivill-Torrús G, Goicoechea C, Bilbao A, Rodríguez de Fonseca F (2007) Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. *Pain* 133: 99-110. [Crossref]

Copyright: ©2014 Nakagawa-Yagi Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.