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Is Emilin-1 a molecular link contributing to the extension 
of thoracic aortic aneurysm dissection and increasing the 
magnitude of the associated hypertension 
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Patients with acute aortic dissection, the dominant condition 
in acute aortic syndromes, have a high mortality [1]. Within types 
of thoracic aortic dissection, the more extensive the TAD the worse 
the prognosis [2]. Thus, factors influencing the extent of the TAD 
are important considerations. The initial presentation of acute aortic 
dissection is severe chest pain and hypertension. The presence of 
hypertension is a key element of thoracic aortic dissection (TAD) [3]. 
The hypertension in acute aortic syndromes is often severe and difficult 
to treat. From another perspective, a significant proportion of patients 
presenting to the emergency department with hypertensive crisis with 
severe blood pressure elevations have an aortic dissection [4].  

Thus, refractory hypertension or high blood pressure which is 
difficult to control or treat, is a major component of acute aortic 
syndromes. Importantly hypertension is a significant independent 
predictor of in-hospital mortality in acute aortic syndromes after 
considering other factors in multivariate analysis [5]. The mechanism 
of the hypertension in this clinical setting has usually been attributed 
to severe chest pain and sympathetic activation. Recent data from 
proteomic analysis of thoracic aortic dissection suggests a new possible 
molecular mechanism that may lead to increases in both the extent of a 
TAD and the associated hypertension.

Proteomic analysis of aortic tissues from patients with aortic 
dissection and hypertension found that emilin-1 was down-regulated 
by approximately 2.3 fold compared to age and sex matched controls 
[6]. The data from protein screening was validated by Western blotting 
[6]. Degradation of proteins in the aortic wall would be anticipated from 
activation of enzymes such as matrix metalloproteases (MMP) in the 
aortic wall in aortic aneurysms leading to TAD [6-9]. Indeed, Emilin 
is a substrate for MMP as demonstrated by its release from human 
radial arteries incubated with different MMPs [10]. The degradation of 
Emilin-1 has potential implications as a factor altering the extent of the 
TAD and increasing the magnitude of the hypertension in acute aortic 
dissection.

Emilin (Elastin Microfibril Interface Located protein), first 
identified as a glycoprotein in the aorta of chick is associated with 
elastic fibers [11-12]. Human Emilin, or Emilin-1, consists of an 
N-terminal signal peptide, a cysteine-rich domain, a coiled-coil motif, a 
collagen-like domain, and a C1q-like motif [13]. Emilin-1 is distributed 
in tissues where elastic recoil is a component of tissue function such as 
in the aorta [13]. Emilin-1 is localized at the interface between elastin 
and microfibrils in the artery and undoubtedly operates to facilitate 
the function of elastin [13] which plays an important role in arterial 
structure and function [14].

While the precise factor(s) initiating TAD is still debated, 
mechanical or functional failure of the aortic elastin is considered to 
predisposes to TAD and further aneurysmal dilatation [15]. EMILIN-
1-deficient aorta is associated with an increase in the space between 
the endothelial cell membrane and the internal elastic lamella as well 
as abnormal cell surface-elastic fiber connections for smooth muscle 
cells [16]. Degradation of Emilin-1 in the aorta in TAD limits the role 
of Emilin-1 to stabilize the molecular interactions between elastic fibers 
[16]. This would be anticipated to extend the dissection process and/or 
removes a constraint for aortic expansion.

Hypertension is not only a significant component of TAD [3] but 
is also an important predictor of TAD mortality [5]. Emilin-1 is a 
regulator of blood pressure as blood pressure is significantly increased 
in the absence of Emilin [17]. EMILIN-1 null mice have an increase in 
systolic blood pressure by 20 mmHg compared to wild type mice and 
systolic blood pressure is increased 10 mmHg in heterozygous animals 
[17]. Diastolic blood pressure is also elevated and the increase in 
blood pressure is attributable to an increase in vascular resistance [17]. 
This action of Emilin involves its ability to prevent pro Transforming 
Growth Factor – beta (TGF-β processing to TGF-β which occurs 
through proteolytic cleavage in the extracellular space [17]. Thus, a 
reduction of the ability of Emilin-1 to downregulate the production 
of TGF-β increases TGF-β and its effects on cell signalling in the 
vasculature. The role of TGF-β in hypertension is complex [18] and 
suggests that the blood pressure elevation secondary to reduced Emilin 
may not be entirely attributable to its role on TGF-β. More importantly 
is the question how much local aortic destruction of Emilin-1 can 
be translated into increases in blood pressure which to date has been 
considered to operative in small resistance vessels [17]. The aorta does 
influence blood pressure mainly systolic blood pressure and TGF-β can 
increase aortic stiffness [19] and to that extent can be a component of 
the hypertensive response to aortic dissection.

TGF-β is involved in the development of aortic aneurysms as genetic 
defects in TGF-β are associated with aortic aneurysms [20-21]. The 
precise role and molecular mechanisms underlying this relationship, 
however, has been characterized as elusive and controversial [22]. 
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Enhanced TGF-β signaling as well as TGF-β receptor mutations have 
been implicated in in aneurysm formation [22-25]. It has been proposed 
that different cell types within the aortic wall responds differently to 
TGF-β so that the balance of effects of TGF-β in conjunction with 
other factors, dictate the net effect [23]. TGF-β-induced smooth 
muscle cell apoptosis and stimulates the differentiation of fibroblasts 
into myofibroblasts which accelerates aneurysm formation [8]. Gene 
mutations in TGF-β can increase of TGF-β signalling, as manifested 
by increased TGF-β in the aorta and phosphorylation of targets such 
as SMAD2, ERK1/2, and Connective Tissue Growth Factor [20,21]. 
Overexpression of TGF-β in Marfan’s syndrome impacts various 
components of the arterial wall including hyaluronic synthesis and 
apoptosis which limit tissue repair and likely contribute to aneurysm 
expansion [26]. Thus, reduction in Emilin-1, a negative regulator of 
TGF-β should lead to aortic expansion.

In summary, there is intriguing new data on a new molecular 
mechanism to account for an expansion of aortic dissection and the 
increase in blood pressure in aortic dissection.  Direct testing of this 
linkage through acute administration of TBF-β inhibitors may lead to 
an improvement in clinical management of TAD.
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