# **Research Article**



ISSN: 2056-6360

# Altered DNA methylation associated with nervosa anorexia in males

Artem Kim<sup>1</sup>, Brigitte Izac<sup>2</sup>, Nicolas Lebrun<sup>3</sup>, Nicolas Ramoz<sup>3</sup>, Corinne Blanchet<sup>4</sup>, Franck Letourneur<sup>2</sup>, Marie Rose Moro<sup>4</sup>, Philip Gorwood<sup>3,5</sup>, Marie De Tayrac<sup>1</sup> and Thierry Bienvenu<sup>3,6\*</sup>

<sup>1</sup>Institute of Genetics and Development of Rennes (Igdr), Rennes, France <sup>2</sup>Cochin Institute, Genomics Platform, Inserm U1016, Paris, France <sup>3</sup>Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm U1266, Paris, France <sup>4</sup>Teenagers' House, Cochin Hospital, Paris, France <sup>5</sup>CMME, St. Anne's Hospital, University Paris-Descartes, France. <sup>6</sup>Laboratory of Molecular Genetics and Biology, Hôpital Cochin, HUPC, AP-HP, Paris, France

### Abstract

**Purpose:** Anorexia nervosa (AN) is a serious psychiatric disorder characterized by abnormal eating behaviors, resulting in weight loss and increased mortality. Although more common in females, an estimated 5 to 10% of affected patients are males. Up to now, the exact cause of male AN is unknown. As with many psychiatric diseases, it's probably a combination of genetic, biological, psychological and environmental factors. Here, we used whole-genome bisulfite sequencing to determine the methylome of male individuals with AN.

Methods: We analyzed by bisulfite sequencing 3,340,894 biologically relevant CpG sites (Illumina TruSeqMethyl Capture EPIC kit) of 6 male patients affected with AN restrictive type. To reduce the environment effect, 4 related unaffected individuals were selected as controls.

**Results:** Comparisons between male patients affected with AN restrictive type and unaffected controls showed 153 differentially methylated regions and 1812 differentially methylated CpGs that corresponded to genes relevant to metabolic and nutritional status, psychiatric status and immune function. Moreover, the String network analysis software identified a subnetwork, related to MAPK signaling pathway, PI3K-Akt signaling pathway and neurotrophin signaling pathway.

**Conclusions:** Our findings replicate several results concerning several target genes such as *PRKAG2*, *RPTOR*, and *ICAM5* previously identified in female AN, and identified novel signaling pathways involving PI3K-Akt and neurotrophin signaling pathway disturbed in AN.

# Introduction

Anorexia nervosa (AN) is a complex neuropsychiatric disorder characterized by weight loss, and an intense fear of gaining weight. Family and twin studies of AN have shown that genetic and environmental factors play important roles in the pathogenesis of AN. Twin studies have estimated the heritability to be~56% [1]. However, while several genes were identified by candidate gene studies and genome-wide association studies (GWAS), they often failed to replicate in other studies [2-5]. The same observation was found for major depression sharing common genetic and environmental risk factors with AN [6]. Indeed, young people who suffered from AN are at high risk of depression [7]. Epigenetics and environmental factors might play a crucial role in the development of AN as well as in major depressive disorder [8]. Recently, a genome-wide DNA methylation study was conducted in women with active AN, AN in remission and in non-AN controls. Global analysis of the 3 groups revealed 295 differentially methylated sites (DMS) representing 277 genes. Some of the identified genes were related to nutrition, to bone and tissue heath, immune function/inflammation, as well as general or transcriptional processes, and glia-neuron interaction [9].

As AN is nine times more often in females than in males, focusing on gender specificities might help to shed light on its overall nature. We therefore propose an analysis of several male AN patients, supporting in part the recent findings and identifying a novel disease-relevant pathway.

#### Patients and methods

We analyzed more than 3.3 M biologically relevant CpGs (Illumina TruSeqMethyl Capture EPIC kit) of 6 male patients affected with AN restrictive type. This approach captures 3,340,894 CpG sites including 26,981 CpG islands (107 Mb), including American College of Medical Genetics (ACMG) genes, coding genes known to be involved in cancer, coding exons from Ensemble 70, and 100 promoters defined as being of high interest and difficult to sequence. To reduce the environment effect, 4 related unaffected individuals- parents of two AN individuals - were selected as controls. Briefly, libraries were prepared according to manufacturer protocol (using the TrueSeq DNA Methylation Kit (cat. EGMK81312, Illumina Inc., San Diego, CA), the NEXTflex

\**Correspondence to:* Thierry Bienvenu, Institute of Psychiatry and Neuroscience of Paris, 102 rue de la Santé, 75014 Paris, France, E-mail: thierry.bienvenu@inserm.fr

Key words: anorexia nervosa, restrictive type, anorexia, whole-genome bisulfite sequencing

Received: July 12, 2019; Accepted: July 22, 2019; Published: July 30, 2019

Bisulfite Sequencing Kit (cat. 5119-02) and the 24 NEXTflex Bisulfite Sequencing Barcodes (cat. 511913)). After PCR-amplification, the bisulfite-treated Libraries were clustered on a V3 paired-end read flow cell and sequenced for 100 cycles on an Illumina NextSeq500 System (Illumina). Fastq files were generated using Illumina's software CASAVA v1.8.2. Raw fastq reads were processed by a custom pipeline that consists of: (i) filtering raw fastq reads for pass filter reads, (ii) trimming adapter sequence by Trim Galore, (iii) genomic alignments performed using Bismark to reference human genome hg19, and (iv) methylation calling by a Bismark script (https://github.com/nfcore/methylseq). The R package methyKit was used for analysis and annotation of DNA [10]. After adjustment for potential confounders and exclusion of age-related CpG, differences were shown between AN individuals and controls. We initially investigated the differentially methylated regions (DMRs) in AN using a computational algorithm MethylKit with a stringent statistical cutoff of q-value (FDR adjusted p-value<0.01) and a minimum 25% change in methylation between AN patients and controls.

#### Results

This approach allowed us to identify a total of 153 DMRs in AN (Table 1). Of these, 53 DMRs were hypomethylated and 100 were hypermethylated, indicating that more genic regions tended to be

methylated in AN individuals, similar to previous observations [9]. We further examined the genomic distribution of differentially methylated CpGs (DMCs). A total of 1812 DMC sites were identified in patients with AN compared to controls (Supplementary Table 1). Among the 1812 DMCs, 748 were hypomethylated, while 1065 were hypermethylated in the AN samples. Among these 1812 DMCs, 216functional genic regions included at least 2 DMCs. Interestingly, when we compared our DMCs list with the short list of Steiger and colleagues, 32 genes were found in both lists (Supplementary Table 2) [9]. Moreover, among the 100 topranked differentially methylated positions identified in patients with major depressive disorder, six were also found in our study (*GNG4*, *SLC39A12*, *CRTAC1*, *MYO7A*, *NTM* and *RMST*), four of them playing a role in neurite extension and neurogenesis (*GNG4*, *SLC39A12*, *NTM* and *RMST*) [8].

To identify the molecular pathways and functions potentially influenced by methylation changes in AN, we performed GO term and KEGG pathway enrichment analyses of the genes closest to the identified DMRs (within the gene body or within +/- 10kb of gene start/ end sites) using the DAVID bioinformatics resources 6.8 (https://david. ncifcrf.gov/). When "Disease" was used for categorization, there were 5 charts categories (with a significant p value with Benjamini correction) of DMRs, the more significant charts being waist-hip ratio (n=9 counts, Benjamini 5.2e-3), tobacco use disorder (37 counts, Benjamini 2.8e-3),

Table 1. Identification of differentially methylated regions (DMR) was performed using the predefined regions of Illumina TruSeq Methylcapture EPIC kit presenting at least 25 % methylation difference between ANcases and controls (column *Change*) with a q-value (FDR corrected p-value) threshold of 0.01

| DMR                       | Chr   | Nb Genes | Genes                                            | p value     | q value     | Change      |
|---------------------------|-------|----------|--------------------------------------------------|-------------|-------------|-------------|
| chrX_114502896_114503051  | chrX  | 0        | -                                                | 2.22451E-15 | 3.71584E-14 | 59.78484933 |
| chr14_54375093_54375328   | chr14 | 1        | AL138479.                                        | 2.65207E-24 | 1.18277E-22 | 48.00682879 |
| chr8_80036078_80036321    | chr8  | 0        | -                                                | 2.44128E-36 | 2.55548E-34 | 46.08190008 |
| chr11_79289117_79289197   | chr11 | 0        | -                                                | 2.09678E-48 | 3.89352E-46 | 44.01889299 |
| chr2_165342265_165342368  | chr2  | 1        | GRB14                                            | 5.17941E-11 | 4.44995E-10 | 43.62139918 |
| chr5_118811413_118811668  | chr5  | 2        | HSD17B4 snoU1                                    | 4.63731E-11 | 4.01928E-10 | 43.59922516 |
| chr19_45113900_45114110   | chr19 | 2        | CEACAM22P IGSF23                                 | 9.32156E-32 | 7.39337E-30 | 40.63822929 |
| chr12_39885082_39885307   | chr12 | 0        | -                                                | 1.48466E-54 | 3.57503E-52 | 40.49521423 |
| chr11_99564881_99564954   | chr11 | 1        | CNTN5                                            | 9.37129E-15 | 1.42916E-13 | 39.62334329 |
| chr20_46228572_46228783   | chr20 | 1        | NCOA3                                            | 1.11712E-13 | 1.47266E-12 | 39.56217898 |
| chr12_9507242_9507307     | chr12 | 0        | -                                                | 1.05726E-24 | 4.90641E-23 | 38.46786372 |
| chr2_238213149_238213414  | chr2  | 0        | -                                                | 1.58339E-06 | 5.42033E-06 | 37.58090232 |
| chr9_88891303_88891317    | chr9  | 1        | ISCA1                                            | 1.08415E-06 | 3.8617E-06  | 37.31409719 |
| chr7_134279040_134279370  | chr7  | 0        | -                                                | 7.42127E-19 | 1.90865E-17 | 36.8404498  |
| chr11 125477842 125477944 | chr11 | 1        | STT3A                                            | 1.37342E-52 | 3.02928E-50 | 36.14363165 |
| chr4 85873367 85873551    | chr4  | 1        | WDFY3                                            | 8.771E-29   | 5.54172E-27 | 35.86458464 |
| chr1 228243499 228243750  | chr1  | 1        | WNT3A                                            | 7.15126E-21 | 2.28614E-19 | 35.584194   |
| chr2_131046231_131046636  | chr2  | 5        | MTND4P2 MTND5P2 MTND6P AC068<br>137.1 AC068137.1 | 1.32673E-40 | 1.75348E-38 | 35.46103678 |
| chr7_39723763_39723940    | chr7  | 1        | RALA                                             | 2.01448E-11 | 1.85339E-10 | 34.0085943  |
| chr6_132297421_132297621  | chr6  | 1        | RP11-69I8.                                       | 0.001384883 | 0.002169711 | 33.37310303 |
| chr3_108880309_108880502  | chr3  | 0        | -                                                | 7.64309E-11 | 6.36725E-10 | 33.06601128 |
| chr1_66753890_66754101    | chr1  | 1        | PDE4B                                            | 0.00182074  | 0.00275054  | 32.96104032 |
| chr2_66654487_66654810    | chr2  | 2        | MEIS1-AS3 MEIS1                                  | 2.10022E-69 | 7.72486E-67 | 32.72071839 |
| chr5_97764439_97764614    | chr5  | 0        | -                                                | 0.000291866 | 0.000557559 | 32.43193392 |
| chr9_115957266_115957508  | chr9  | 1        | FKBP15                                           | 1.69011E-15 | 2.87555E-14 | 32.29050602 |
| chr15_50209373_50209588   | chr15 | 1        | ATP8B4                                           | 3.01371E-25 | 1.45926E-23 | 31.98261372 |
| chr17_11608628_11608839   | chr17 | 1        | DNAH9                                            | 6.97091E-30 | 4.8207E-28  | 31.79815222 |
| chr4_3040168_3040507      | chr4  | 2        | GRK4 RNU6-204                                    | 7.3598E-14  | 9.96918E-13 | 31.65690685 |
| chr6_88956453_88956584    | chr6  | 0        | -                                                | 9.99041E-12 | 9.68676E-11 | 31.54201058 |
| chr21_15436054_15437354   | chr21 | 3        | AP001347. ANKRD20A18 RNA5SP48                    | 0           | 0           | 31.16688815 |
| chr3_49712243_49712522    | chr3  | 4        | BSN APEH MST1 AC099668.                          | 8.07314E-25 | 3.79115E-23 | 31.03180163 |
| chr12_25264152_25264371   | chr12 | 2        | LRMP CASC1                                       | 8.78331E-27 | 4.8313E-25  | 30.29058703 |
| chrX 9121569 9121778      | chrX  | 1        | FAM9B                                            | 0.000426217 | 0.000777831 | 30.08088109 |

| chr3_84932517_84932772    | chr3  | 2 | LINC00971 LINC02025           | 2.07283E-18 | 5.07715E-17 | 29.94169954 |
|---------------------------|-------|---|-------------------------------|-------------|-------------|-------------|
| chr7_123928236_123928461  | chr7  | 2 | RP5-921G16. RP11-264K23.      | 3.518E-31   | 2.67311E-29 | 29.91216787 |
| chr9_106087270_106087465  | chr9  | 1 | LINC01492                     | 8.36825E-19 | 2.13729E-17 | 29.78985686 |
| chr5_120388958_120389191  | chr5  | 2 | AC008565. CTD-2613O8.         | 7.61105E-44 | 1.17667E-41 | 29.58350371 |
| chr11_8927411_8927650     | chr11 | 2 | ST5 AKIP1                     | 4.49366E-10 | 3.25802E-09 | 29.52623011 |
| chr6_159572123_159572413  | chr6  | 0 | -                             | 7.42108E-39 | 8.88692E-37 | 29.31934038 |
| chr22 49625975 49626187   | chr22 | 0 | -                             | 2.92003E-11 | 2.61571E-10 | 29.27879223 |
| chr12 9776968 9777167     | chr12 | 2 | LOC374443 RNU6-700            | 1.12651E-09 | 7.58502E-09 | 29.08923252 |
| chr3 170332310 170332590  | chr3  | 1 | SLC7A14-AS1                   | 1.8717E-08  | 9.81278E-08 | 29.01098901 |
| chr4 77986307 77986536    | chr4  | 1 | CCNI                          | 3.91084E-14 | 5.48555E-13 | 28.97085991 |
| chr22 42176013 42176129   | chr22 | 1 | MEI1                          | 0.000206038 | 0.000410706 | 28.81962113 |
| chr10 25240859 25240994   | chr10 | 2 | PRTFDC1 RP11-165A20.          | 6.26124E-28 | 3.71906E-26 | 28.60587752 |
| chr3 79966821 79966915    | chr3  | 0 | _                             | 1.15638E-10 | 9.34284E-10 | 28.60217066 |
| chr3 45649141 45649463    | chr3  | 1 | LIMD1                         | 6.28165E-62 | 1.8899E-59  | 28.50314686 |
| chr6 25166613 25166879    | chr6  | 1 | СМАНР                         | 2.17351E-96 | 1.46968E-93 | 28.37986243 |
| chr3 152213629 152213846  | chr3  | 1 | RP11-362A9.                   | 6.8342E-05  | 0.000155335 | 28.26746276 |
| chr11 59836664 59836958   | chr11 | 2 | MS4A3 RP11-736I10.            | 3.63343E-09 | 2.21257E-08 | 28.0516934  |
|                           | chr20 | 1 | MACROD2                       | 1.40341E-20 | 4.35847E-19 | 28.02413196 |
| chr20_14124320_14124383   |       | 1 |                               |             |             |             |
| chr22_32728242_32728474   | chr22 |   | RP1-149A16.1                  | 8.85421E-11 | 7.29047E-10 | 27.91646442 |
| chr2_183106034_183106226  | chr2  | 1 | PDE1A                         | 9.65506E-09 | 5.3791E-08  | 27.85254866 |
| chr6_118401762_118401938  | chr6  | 2 | SLC35F1 LOC105377967          | 4.64459E-19 | 1.22408E-17 | 27.79487179 |
| chr10_91369814_91369992   | chr10 | 1 | PANK1                         | 1.57036E-21 | 5.3785E-20  | 27.77056277 |
| chr12_49121182_49121257   | chr12 | 1 | TEX49                         | 8.24722E-13 | 9.54004E-12 | 27.60425962 |
| chr5_95362159_95362388    | chr5  | 1 | LOC101929710                  | 4.61645E-19 | 1.21738E-17 | 27.51574796 |
| chr17_16935456_16935522   | chr17 | 0 | -                             | 4.58885E-09 | 2.74027E-08 | 27.46293683 |
| chr3_42093299_42093629    | chr3  | 2 | TRAK1 RP11-193I22.            | 6.20321E-37 | 6.69223E-35 | 27.41943731 |
| chr3_149867507_149867632  | chr3  | 1 | LOC105374313                  | 3.07268E-11 | 2.74327E-10 | 27.29693742 |
| chrX_43503885_43504133    | chrX  | 0 | -                             | 4.40393E-09 | 2.64009E-08 | 27.18926273 |
| chr14_77035752_77035960   | chr14 | 1 | RP11-18707.                   | 6.2288E-12  | 6.23127E-11 | 27.15821169 |
| chr10_52771069_52771259   | chr10 | 1 | PRKG1                         | 3.87096E-16 | 7.14936E-15 | 27.04932754 |
| chr2_38055293_38055466    | chr2  | 1 | LINC00211                     | 7.48568E-28 | 4.4228E-26  | 27.03032591 |
| chr1_108245511_108245769  | chr1  | 1 | VAV3                          | 3.17027E-12 | 3.3165E-11  | 26.94594044 |
| chr11_132891631_132891819 | chr11 | 1 | OPCML                         | 4.6077E-05  | 0.000109674 | 26.80024478 |
| chr8_8538073_8538307      | chr8  | 0 | -                             | 6.60262E-14 | 8.99085E-13 | 26.64249158 |
| chr8_107757803_107757980  | chr8  | 1 | OXR1                          | 0.000716855 | 0.001224528 | 26.62186488 |
| chr21_36250641_36250940   | chr21 | 2 | LOC100506403 RUNX1            | 3.11176E-25 | 1.50565E-23 | 26.55673748 |
| chr9_14910433_14910528    | chr9  | 1 | FREM1                         | 8.33159E-21 | 2.64892E-19 | 26.53151371 |
| chr3_10851357_10851586    | chr3  | 1 | SLC6A11                       | 0.004410223 | 0.005890646 | 26.40737551 |
| chr9 73216788 73217020    | chr9  | 1 | TRPM3                         | 3.0921E-15  | 5.06212E-14 | 26.40133464 |
| chr17 77906666 77906803   | chr17 | 3 | LINC01979 LINC01978 TBC1D16   | 3.90756E-08 | 1.9197E-07  | 26.38634157 |
| chr15 101507155 101507328 | chr15 | 1 | LRRK1                         | 5.16927E-09 | 3.05155E-08 | 26.37814064 |
| chr10 87988149 87988359   | chr10 | 1 | GRID1                         | 0.003497861 | 0.004828383 | 26.35618749 |
| chr13 46978725 46978934   | chr13 | 2 | RUBCNL RNU6-68                | 2.29746E-12 | 2.46329E-11 | 26.04182226 |
| chrX 149197068 149197285  | chrX  | 1 | LINC00894                     | 2.44211E-07 | 1.01031E-06 | 26.00779648 |
| chr16 66453623 66453908   | chr16 | 2 | LINC00920 BEAN1               | 3.68957E-06 | 1.15579E-05 | 25.85630262 |
| chr1 165186330 165186523  | chr1  | 3 | LMX1A RP11-38C18. RP11-38C18. | 0.000275984 | 0.000530947 | 25.72822521 |
| chr12 6662473 6662654     | chr12 | 3 | IFF01 RP5-940J5. NOP2         | 9.5204E-29  | 6.00387E-27 | 25.71991419 |
| chr4 129308317 129308548  | chr4  | 1 | LINC02615                     | 2.02201E-09 | 1.29361E-08 | 25.68972744 |
| chr4 102756899 102757268  | chr4  | 1 | BANK1                         | 8.27941E-46 | 1.39081E-43 | 25.66642434 |
| chr6 101852800 101852969  | chr6  | 1 | GRIK2                         | 1.14283E-19 | 3.23959E-18 | 25.50742035 |
| chr7 147500652 147500831  | chr7  | 1 | CNTNAP2                       | 4.69478E-06 | 1.43535E-05 | 25.47112462 |
| chr2 130683180 130683508  | chr2  | 2 | PLAC9P1 LINC01856             | 2.6716E-16  | 5.03565E-15 | 25.46823547 |
|                           |       | 2 |                               | 6.39788E-06 | 1.89017E-05 |             |
| chr3_69157750_69157970    | chr3  | 2 | ARL6IP5 LMOD3                 |             |             | 25.46542143 |
| chr12_104676677_104676883 | chr12 |   | TXNRD1 RP11-818F20.           | 4.32249E-15 | 6.92567E-14 | 25.4273867  |
| chr9_4375797_4376098      | chr9  | 1 | AL162419.                     | 3.07166E-06 | 9.81114E-06 | 25.41113806 |
| chr6_55377549_55377764    | chr6  | 1 | HMGCLL1                       | 4.38355E-45 | 7.21874E-43 | 25.36445879 |
| chr8_80816076_80816210    | chr8  | 0 | -                             | 2.50289E-06 | 8.16528E-06 | 25.34385329 |
| chr5_171810643_171810847  | chr5  | 1 | SH3PXD2B                      | 2.88223E-10 | 2.16508E-09 | 25.2488391  |
| chr2_66648614_66648933    | chr2  | 1 | MEIS1-AS3                     | 1.28929E-22 | 4.90242E-21 | 25.21383356 |
| chr14_96583490_96583604   | chr14 | 0 | -                             | 0.003078364 | 0.004325989 | 25.19935377 |
| chr22_16864741_16864893   | chr22 | 1 | ABCD1P                        | 0.002259786 | 0.003313591 | 25.19298246 |
| chr10 90483503 90483709   | chr10 | 2 | LIPK KRT8P3                   | 3.47526E-44 | 5.45461E-42 | 25.15294597 |

| chr6_7699982_7700169                                | chr6          | 0 | -                                               | 1.47903E-12                | 1.64125E-11                | 25.12462285                  |
|-----------------------------------------------------|---------------|---|-------------------------------------------------|----------------------------|----------------------------|------------------------------|
| chr3_195501977_195502276                            | chr3          | 1 | MUC4                                            | 1.31243E-47                | 2.3649E-45                 | 25.08813062                  |
| chr18_29303346_29303538                             | chr18         | 3 | RN7SKP4 LRRC37A7 RP11-549B18.                   | 1.62011E-27                | 9.3655E-26                 | 25.03570419                  |
| chr3_95424692_95425326                              | chr3          | 0 | -                                               | 3.3968E-14                 | 4.80683E-13                | 25.03516155                  |
| chr3_180102299_180102384                            | chr3          | 0 | -                                               | 9.13491E-07                | 3.3066E-06                 | 25.01885857                  |
| chr22_35587422_35587713                             | chr22         | 2 | LINC01399 COX7BP                                | 1.08406E-10                | 8.79565E-10                | -25.01400968                 |
| chr20_36132841_36133069                             | chr20         | 1 | BLCAP                                           | 1.55091E-18                | 3.84306E-17                | -25.14666861                 |
| chr19_47082930_47083060                             | chr19         | 2 | PPP5D1 AC011551.                                | 6.29188E-21                | 2.02349E-19                | -25.24712874                 |
| chr19_49572906_49573157                             | chr19         | 4 | NTF4 CTB-60B18.1 CTB-<br>60B18.1 KCNA7          | 5.89203E-07                | 2.23171E-06                | -25.34019384                 |
| chr3_11489044_11489192                              | chr3          | 1 | ATG7                                            | 7.90562E-10                | 5.47842E-09                | -25.40198715                 |
| chr17 75631717 75631979                             | chr17         | 0 | -                                               | 1.84137E-05                | 4.85349E-05                | -25.53803605                 |
| chr1 19176711 19177105                              | chr1          | 2 | TAS1R2 RP13-279N23.                             | 0.000375134                | 0.000695164                | -25.58525242                 |
| chr11 5840963 5841191                               | chr11         | 2 | TRIM5 OR52N2                                    | 2.88714E-66                | 9.68772E-64                | -25.69185678                 |
| chr2 55378165 55378300                              | chr2          | 0 | -                                               | 9.89458E-19                | 2.51065E-17                | -25.78431373                 |
| chr13 19315890 19316198                             | chr13         | 3 | ZNF965 LINC00417 CYP4F34                        | 8.90044E-14                | 1.19079E-12                | -25.87364383                 |
| chr18 61669993 61670289                             | chr18         | 1 | SERPINB8                                        | 8.41432E-63                | 2.5838E-60                 | -26.04262437                 |
| chr20 32885922 32886673                             | chr20         | 1 | АНСҮ                                            | 2.8332E-44                 | 4.47838E-42                | -26.45197851                 |
| chr6 106252261 106252558                            | chr6          | 0 | _                                               | 6.2211E-107                | 4.9875E-104                | -26.54101932                 |
| chr2 25383849 25384399                              | chr2          | 3 | EFR3B RP11-509E16 POMC                          | 4.25503E-85                | 2.26062E-82                | -26.70759651                 |
| chr4 131633369 131633569                            | chr4          | 0 | -                                               | 1.21778E-09                | 8.14225E-09                | -26.8218303                  |
| chr4 26789871 26790007                              | chr4          | 0 | -                                               | 9.76527E-06                | 2.75795E-05                | -27.15229384                 |
| chr1 55370080 55370265                              | chr1          | 0 | -                                               | 1.33489E-60                | 3.89366E-58                | -27.2302102                  |
| chr19 45619267 45619497                             | chr19         | 2 | MARK4 PPP1R37                                   | 3.61011E-48                | 6.62101E-46                | -27.29034787                 |
| chr16 33588844 33589010                             | chr16         | 1 | ENPP7P13                                        | 8.03476E-26                | 4.0933E-24                 | -27.38040136                 |
| chr4 15907926 15908145                              | chr4          | 0 |                                                 | 2.8442E-50                 | 5.76083E-48                | -27.44818039                 |
| chr10 67155111 67155236                             | chr10         | 0 |                                                 | 4.83108E-11                | 4.17264E-10                | -27.80333564                 |
| chr17 4278292 4278786                               | chr17         | 1 | UBE2G1                                          | 9.00939E-24                | 3.82074E-22                | -27.82640422                 |
| chr11 116344108 116344147                           | chr11         | 0 | -                                               | 0.000326633                | 0.000615342                | -27.8388828                  |
| chr19 34245878 34246069                             | chr19         | 1 | CHST8                                           | 6.69284E-06                | 1.96741E-05                | -27.92649973                 |
| chr17 16864290 16864524                             | chr17         | 1 | TNFRSF13B                                       | 1.26001E-12                | 1.41214E-11                | -28.2842299                  |
| chr11 82354426 82354705                             | chr11         | 2 | MIR4300HG RP11-179A16.                          | 6.09835E-07                | 2.30172E-06                | -29.18358119                 |
| chr5 153676389 153676633                            | chr5          | 1 | GALNT10                                         | 1.43406E-68                | 5.14737E-66                | -29.70725527                 |
| chr10 134778418 134779164                           | chr10         | 3 | LINC01166 LINC01167 LINC01168                   | 5.1864E-178                | 1.2399E-174                | -29.73911375                 |
| chr8 36995835 36995986                              | chr8          | 1 | MIR1268A                                        | 3.40507E-09                | 2.0846E-08                 | -29.75107115                 |
| chr2 213316451 213316721                            | chr2          | 1 | ERBB4                                           | 3.25312E-05                | 8.05895E-05                | -30.06050559                 |
| chr3 105601223 105601548                            | chr3          | 0 | -                                               | 3.99011E-26                | 2.08106E-24                | -30.45696192                 |
| chr2 130693963 130694229                            | chr2          | 3 | -<br>PLAC9P1 LINC01856 AC079776.                | 1.8989E-114                | 1.6726E-111                | -30.54653298                 |
| chr11 110986763 110986975                           | chr11         | 1 | RP11-89C3.                                      | 0                          | 0                          | -30.61868687                 |
| chr4 184296182 184296485                            | chr4          | 2 | RP11-451F20. AC093844.                          | 3.2812E-82                 | 1.64531E-79                | -30.6235367                  |
|                                                     |               | 0 | KI 11-451F20. AC075644.                         | 4.66098E-09                | 2.77827E-08                | -30.7652865                  |
| chr6_21452696_21452935<br>chr14_56669107_56669307   | chr6<br>chr14 | 1 | -<br>PELI2                                      | 0.005344129                | 0.006946025                | -30.7632863                  |
|                                                     |               | - |                                                 |                            |                            |                              |
| chr13_25141770_25142091<br>chr2_238796929_238797268 | chr13<br>chr2 | 3 | TPTE2P6 PSPC1P RP11-556N21.<br>RAMP1            | 2.11697E-25<br>9.04001E-24 | 1.04092E-23<br>3.83251E-22 | -31.10709988<br>-31.35072812 |
| chr17_6901611_6901751                               | chr17         | 4 | ALOX12-AS1 RP11-589P10. RP11-<br>589P10. ALOX12 | 0.00014541                 | 0.000302279                | -31.60823695                 |
| chr15 79299672 79299707                             | chr15         | 1 | RASGRF1                                         | 0.004476538                | 0.005967375                | -32.72230999                 |
| chr1 223353214 223353363                            | chr1          | 1 | RASORF1<br>RP11-239E10                          | 7.13359E-18                | 1.64468E-16                | -33.00889209                 |
| chr1 113221602 113221746                            | chr1          | 2 | CAPZA1 MOV10                                    | 8.44636E-34                | 7.62526E-32                | -33.03827068                 |
| chr19 21860552 21861267                             | chr19         | 1 | RP11-420K14.                                    | 1.3469E-284                | 1.127E-280                 | -33.08420719                 |
| chr2 145505959 145506291                            | chr2          | 2 | TEX41 AC023128.                                 | 2.36911E-23                | 9.63501E-22                | -33.13077409                 |
| chr21 29565178 29565285                             | chr21         | 1 | LINC01695                                       | 0.000196292                | 0.000393653                | -33.4915241                  |
| chr22 47442504 47442671                             | chr21         | 1 | TBC1D22A                                        | 2.44869E-31                | 1.87658E-29                | -34.87001855                 |
| chr8 119449323 119449547                            | chr8          | 1 | SAMD12                                          | 2.1869E-06                 | 7.23312E-06                | -36.3138769                  |
| chr8_119449323_119449347<br>chr3_6706652_6706860    | chr8<br>chr3  | 2 | AC069277.JGRM7-AS3                              | 0.00028562                 | 0.000547251                | -39.63810451                 |
|                                                     |               | 0 | AC007277.[GRM17-A55                             | 3.30084E-09                | 2.02608E-08                | -39.63810431                 |
| chr8_129286309_129286584                            | chr8          | 3 | -<br>MIR548Z DPY19L2 RP11-415112.               | 0.000389652                | 0.000718873                | -40.8170893                  |
| chr12_64067778_64067878                             | chr12         | 2 |                                                 |                            |                            |                              |
| chr15_71187717_71187868                             | chr15         |   | LRRC49 THAP10                                   | 0.004522921                | 0.006020138                | -42.45762712                 |
| chr3 115099771 115100023                            | chr3          | 0 |                                                 | 0.002555418                | 0.003683188                | -42.60471914                 |

chemdependency (n=40 counts, Benjamini 1.2e-3), metabolic (n=49, Benjamini 3.1e-3) and neurological (32 counts, Benjamini 3.8e-3).

We next focused on the 153 DMRs, the String network analysis software identified a subnetwork, related to MAPK signaling pathway (hs04010, FDR 0.0026), PI3K-Akt signaling pathway (hsa04151, FDR 0.0232) and neurotrophin signaling pathway (hsa04550, FDR 0.0251)(https://string-db.org/cgi/network.pl?taskId=07ri9Goe1SzI) (Figure 1).

# Discussion

To the best of our knowledge, the present study presents the first genome-wide DNA methylation profiling of 6 male AN patients, using a high-throughput DNA methylation sequencing covering a large number of CpG sites on the human genome. Patients affected with AN restrictive type showed many differentially methylated sites, with significant between group differences corresponding to genes implicated in metabolic and nutritional status, psychiatric status and immune function. When we compared our DMCs list with the short list of Steiger and colleagues obtained in female AN patients, 32 genes were found in both lists [9]. Moreover, because the interaction between depression and anorexia nervosa was significant, we also identified six genes previously found in patients with major depressive disorder [8]. Taking into account that our approach was based on genome-wide



Figure 1. Protein subnetwork of the identified proteins constructed with the STRING software for enrichment analysis of proteins (PPI enrichment value 7.04e-08) showing a dysmethylation status (15 DMRs among the 119 identified DMRs including at least one coding or non-coding genes). Each node represents a protein entity. Gene Ontology identified functional enrichments for several biological process including neuron differentiation (GO:0030182, FDR 8.15e-06) and behavior (GO:0007610, FDR 0.00025)(in black), and KEGG pathways identified enrichments for several pathways including MAPK signaling pathway (hs04010, FDR 0.0026)(grey square), PI3K-Akt signaling pathway (hs04151, FDR 0.0222)(white square) and Neurotrophin signaling pathway (hs04550, FDR 0.0251) (grey triangle)(https://string-db.org/cgi/network.pl?taskId=07ri9Goe1SzI)

methylation sequencing, we also identified additional candidate genes involved in psychiatric disorders (*GRID1, NAALADL2-AS3, PDZD, CEP85L, GRIK3, SLC7A14*), in metabolism regulation (lipids, *ZFP36L1, CERK, ACSF3, EEPD1*; glucose, *KCNA7*), and finally, in addiction (*GDE1, CCKAR, PDYN*). Moreover, we identified few genes previously associated with anorexia nervosa in genome-wide association studies (*VGLL4, GRID1, WWOX, CAMK1D, SORCS2*) (https://www.ebi. ac.uk/gwas/search?query=anorexia%20nervosa). Interestingly, the String network analysis software revealed a subnetwork related to neurotrophin signaling pathway (Figure 1). The reported data, in addition to the previous reported findings for *BDNF, NTRK2* and *NTRK3*, point again neurotrophin signaling genes as key regulators of eating behavior.

To conclude, our data replicates several results concerning several target genes such as *PRKAG2*, *RPTOR*, and *ICAM5* previously discussed [9], and identified novel signaling pathways involving PI3K-Akt and neurotrophin signaling pathway disturbed in anorexia nervosa. Future replication of findings in male AN patients will be a determinant.

#### Compliance with ethical standards

#### Funding

This study was supported by Institut National de la Recherche Médicale (INSERM) and by Fondation Maladies Rares (program High throughput sequencing and rare disease, number #11632).

#### **Conflicts of interest**

The authors declare that they have no conflicts of interest.

#### **Ethical approval**

All procédures performed in this study were in accordance with the ethical standards of our national research committee and with the 1964 Helsinki declaration and its later amendments. Informed written consent was obtained from all patients and parents included in the study.

# Acknowledgements

We thank the families for their enthusiastic participation and all physicians from the different medical and psychiatric centers.

#### References

- Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, et al. (2006) Prevalence, heritability, and prospective risk factors for anorexia nervosa. *Arch Gen Psychiatry* 63: 305-312. [Crossref]
- Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W, Schork NJ, et al. (2011) A genomewide association study on common SNPs and rare CNVs in anorexia nervosa. *Mol Psychiatry* 16: 949-959. [Crossref]
- Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, et al. (2014) A genome-wide association study of anorexia nervosa. *Mol Psychiatry* 19: 1085-1094. [Crossref]
- Duncan L, Yilmaz Z, Gaspar H, Walters R, GoldsteinJ, Anttila V, et al. (2017) Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. *Am J Psychiatry* 174: 850-858. [Crossref]
- Huckins LM, Hatzikotoulas K, Southam L, Thornton LM, Steinberg J, Aguilera-McKay F, et al. (2018) Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. *Mol Psychiatry* 23: 1181-1188. [Crossref]
- Thornton LM, Welch E, Munn-Chernoff MA, Lichtenstein P, Bulik CM (2016) Anorexia nervosa, major depression, and suicide attempts: shared genetic factors. *Suicide Life Threat Behav* 46: 525-534. [Crossref]

- Wade TD, Bulik CM, Neale M, Kendler KS (2000) Anorexia nervosa and major depression: shared genetic and environmental risk factors. *Am J Psychiatry* 157: 469-471. [Crossref]
- Shimada M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, et al. (2018) Anepigenome-wide methylation study of healthy individuals with or without depressive symptoms. *J Hum Genet* 63: 319-326. [Crossref]
- Steiger H, Booij L, Kahan, McGregor K, Thaler L, Fletcher E, et al. (2019) A longitudinal,epigenome-wide study of DNA methylation in anorexia nervosa: results in actively ill, partially weight-restored, long-term remitted and non-eatingdisorderedwomen. J Psychiatry Neurosci 44: 1-9. [Crossref]
- Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. (2012) MethylKit: a comprehensive R package for the analysis of genome-wideDNA methylation profiles. *Genome Biol* 13: 80-87. [Crossref]

**Copyright:** ©2019 Kim A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.