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Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by a beta-coronavirus closely linked to the SARS coronavirus. COVID-19 patients 
present with hypoxemia linked to acute respiratory distress syndrome (ARDS). Reversing the hypoxemia prevalent in COVID-19 requires advanced mechanisms 
that facilitate the transportation of oxygen from alveoli to blood, as increased supplemental oxygen does not always lead to optimal oxygen saturation. Clinical and 
experimental evidence suggest a significant role for inhaled Nitric Oxide (NO) as a selective vasodilator, which has shown to restore oxygenation by helping to 
normalise shunts and ventilation/perfusion mismatch. NO has demonstrated the ability to suppress the replication of a respiratory corona virus, which is unique for 
NO among other vasodilators. These suggest a potentially significant role for NO in the clinical management of COVID-19, warranting urgent investigations into 
optimal methods of harnessing its potential in restoring pulmonary physiology.

Introduction 
The pathophysiological conditions and clinical evidence associated 

with COVID-19 are rapidly being established, supporting the 
development of therapeutic solutions [1,2]. COVID-19 patients present 
with respiratory characteristics of acute respiratory distress syndrome 
(ARDS), which in accordance with The Berlin definition includes; new 
or worsening respiratory symptoms within one week of symptom onset; 
bilateral opacities on chest imaging not fully explained by effusions, 
atelectasis or nodules; respiratory failure from lung edema not fully 
explained by cardiac failure or fluid overload; and finally oxygenation 
impairment [3]. However, the ARDS presented with COVID-19 is 
recognised to be atypical as an alarmingly majority do not experience 
breathlessness and have relatively good lung compliance, whilst 
presenting with hypoxia [4-6]. Supplemental oxygen can partially 
improve oxygen saturation. However, hypoxaemia due to shunt 
does not respond well to supplemental oxygen [7]. High levels of 
supplemental oxygen can be toxic but can be prevented by titrating [8]. 

Invasive mechanical ventilation, which is considered when addressing 
the most severe cases continues to be associated with a higher incidence 
of adverse outcomes [9]. Therefore, there is currently an incentive to 
explore alternative methods of optimal management of patients in 
addition to widely practiced prone positioning [10]. Methods of 
reducing pulmonary resistance and resolving oxygenation with non-
invasive therapy are of interest [11].

Hypoxia is known to cause vasodilation in systemic arteries whilst 
causing vasoconstriction in pulmonary arterioles. Nitric Oxide (NO) 
has a major role in regulating hypoxia and in healthy conditions it was 
found that NO can mediate adaptive mechanisms including modulation 
of vasodilation. Hypoxia regulation in extreme conditions such as 
high altitudes has shown a strong link to NO, with large population-
based studies demonstrating NO upregulation as a physiological 
response [12]. Exhaled NO measurements associated with a range of 
respiratory disease conditions demonstrate specific variations in NO 
downregulation that correspond to an identifiable role in NO [13].

NO is a gaseous molecule and is primarily known for its role in 
regulating vascular compliance via cGMP pathway [14]. It is synthesised 
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by the endothelial cells lining both healthy blood vessels, and platelets. 
NO prevents thrombotic complications by inhibiting blood coagulation 
and regulates blood flow. It is also synthesised in epithelial cells and is 
known for its potent antimicrobial properties as well as its ability to 
suppress the rate of viral replication [15,16]. NO synthesis is known 
to be impaired with co-morbidities that include metabolic syndrome 
and diabetes, thus it is arguable that impaired NO synthesis could be 
co-related to COVID-19 patient groups that are most severely affected 
[17,18].

The entry point of the coronavirus has been recognised to be 
Angiotensin Converting Enzyme 2 (ACE2) receptors, which are 
expressed in endothelial and epithelial cells [19]. ACE2 pathway is 
known to modulate a cascade of events including vascular compliance 
and vasodilation [20]. ACE2 has a direct effect in upregulation of Nitric 
Oxide Synthase demonstrated in ACE2 knockout mice with resulting 
vascular dysfunction and NO imbalance [21]. It would be beneficial to 
investigate whether potential therapeutic options to address COVID19, 
could be linked to this ACE2 –NO pathway.

This article presents the perspective that inhaled NO should be 
considered within the protocols in managing COVID-19, with the 
view that disruption to NO and related pathways may be leading 
complications related to COVID19. It is timely to evaluate the validity 
of this hypothesis and the results could be key, not only in managing 
COVID19, but also for the management of related hypoxic respiratory 
conditions. 

Nitric oxide improves oxygenation 

Inhaled NO with a half- life of around 3-5s diffuses from alveoli to 
vascular smooth muscle cells. These cells are adjacent (~1µm) to the 
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alveoli and causes selective pulmonary vasodilatation. This imparts an 
overall effect in pulmonary gas exchange, by increasing blood flow to 
well ventilated areas in the lung whilst simultaneously reducing the flow 
to areas of shunts [22,23]. NO has a high affinity to haemoglobin and 
gets deactivated upon binding to form methaemoglobin. In doing so it 
limits vasodilatory effects to ventilated areas of the lung [24]. Inhaled 
NO in the presence of superoxide is also converted into nitrogen 
dioxide, peroxy‐nitrite and nitro‐tyrosine. It should therefore be 
monitored and regulated to facilitate the positive effects of inhaled NO 
in reversing hypoxaemia. This could be done by controlling the dose 
and rate of inhaled NO introduction [14]. Pharmacological properties 
of inhaled nitric oxide can be linked to toxicological effects and should 
be considered when administering as therapeutic agent [25,26].

Haemoglobin within red blood cells that successfully take up 
oxygen from alveoli need to carry NO in order to facilitate oxygen 
delivery to relevant tissues. NO through protein S-nitrosylation and 
formation of S-nitrosothiol has shown a significant role in regulating 
ventilation during hypoxia [27]. Conditions such as diabetes and 
sickle cell disease, which affect allosteric properties of haemoglobin 
tetramer, are impaired in the ability to carry NO and therefore oxygen 
delivery to tissues becomes impaired [28]. It would be interesting to 
investigate if hypoxaemia in COVID-19 is related to such impairments 
in haemoglobin, and if there are related changes to the NO carrying 
capacity. 

Independent of COVID-19, ARDS was recognised in need of 
suitable strategies in its clinical management with a reported relatively 
high rate of admissions in Intensive Care Units (ICU) and a high rate 
of mortality. Disease conditions that injure lungs such as infection or 
pneumonia can cause ARDS. ARDS, Chronic Obstructive Pulmonary 
Disorder (COPD) and pulmonary embolism are major conditions that 
result in arterial hypoxemia. Low ventilation‐perfusion (V/Q) and shunt 
are recognised to be most common causes of clinical hypoxemia and 
shunt most common in ARDS. There are numerous studies that have 
investigated the application of NO in ARDS as well as its application 
in managing critically ill patients in ICU [29-35]. Whilst there is no 
strong evidence to support a role for NO in directly reducing mortality, 
inhaled NO has very strong experimental and clinical evidence with 
improved oxygenation, at least for 72hr [35]. This could be a mortality 
determining factor in a resource limited COVID-19 situation and 
therefore inhaled NO could certainly be considered as a short-term 
rescue therapy to link with further management strategies [36-38]. 
Patients with greater baseline intrapulmonary shunt have demonstrated 
the most significant improvement in oxygenation and low dosed, (10-
40ppm) pulsed inhaled NO seem to be most effective [22,33-34]. 
Inhaled NO therefore should be considered prior to invasive ventilation 
and other treatment strategies such as extracorporeal membrane 
oxygenation for COVID-19 patients.

The effects of inhaled NO in COPD patients where hypoxemia is 
caused by low V/Q show a variable response within subgroups , within 
which the less consistent results are explained as a con-sequence of 
NO as a vasodilator reaching low V/Q regions. This in turn leads to 
greater arterial de-saturation. Unlike COPD, ARDS patients as well as 
those with acute severe pneumonia, have consistently and dramatically 
responded with a reduction in shunting and improved oxygenation 
[23]. Careful examination of systematic reviews that conclude an overall 
non-significant role for inhaled NO seem to base their conclusion with 
large variations in sub-groups. The authors themselves suggest caution 
to act on their conclusions and suggest further investigations would 

be beneficial. It is notable that even these systematic reviews have 
consistently highlighted a positive role of NO in oxygenation. 

Blood clot formation 

NO is well recognised for its role in inhibiting platelet aggregation 
and therefore its antithrombotic properties [39]. This could be yet 
another role for NO in managing COVID-19 patients who report 
increased D-dimer levels, and clot formation suggesting a pathological 
condition that could lead to thrombotic complications [40,41]. This 
is currently managed with prophylactic Heparin. Prostacyclin such 
as Epoprostenol is known as a potent anticoagulant and inhaled 
Epoprostenol is known to be effective as a vasodilator in severe 
hypoxemia [42]. Unlike NO, which has a selective, local pulmonary 
effect, prostacyclin could lead to a more systemic vasodilatory effect.

Nitric oxide’s antiviral role 

In addition to its vasodilatory and antithrombotic roles, NO has a 
key role in microbial infections particularly through its synthesis via 
inducible NO synthase (iNOS) [43]. A healthy airway epithelium can 
produce NO that acts as an antiviral agent in addition to providing 
a complex immune reactions in the pulmonary system [44-46]. 
Therefore, disease conditions that have impaired synthesis of NO 
could be salvaged with exogenous NO in the form of inhaled NO or 
NO releasing compounds, where innovative delivery mechanisms can 
be explored. SARS, which was caused by a Coronaviridae family virus 
had resulted in 774 deaths. NO has been shown to successfully inhibit 
its replication cycle by affecting its proteins and reduction in viral RNA 
[47-49]. Respiratory coronaviral infections have been recognised to 
induce epithelial cytolysis and NO releasing molecules, S-nitroso-N-
acetylpenicillamine were able to preserve/restore rate of survival of 
SARS-Coronavirus infected cells [50,51].

Overall perspective 

With an evident role in rapid re-oxygenation in ARDS, application 
of NO could be a mortality determining factor in a globally resource 
limited situation as COVID-19. Encouragingly, there are clinical trials 
underway to evaluate the effect of inhaled NO in managing COVID-19. 
These include “NO Gas Inhalation for Severe Acute Respiratory 
Syndrome in COVID-19 (NOSARSCOVID), NCT04290871”, Nitric 
Oxide Inhalation Therapy for COVID-19 Infections in the ED (NO 
COV-ED), NCT04338828, High Dose Inhaled Nitric Oxide for 
COVID-19 (ICU Patients),NCT04383002, a study led by Novoteris 
and Mallinckrodt with a high-concentration form of NO named 
Thiolanox, Dose and rate of NO administration as well as degree of 
exposure to superoxide could significantly vary the responses in 
addition to variations in pathological conditions that underlie a given 
respiratory condition and therefore need to be carefully documented. 
There are opportunities to develop systems that detect and respond to 
such changes where the process can be automated possibly through 
integrating machine learning and artificial intelligent systems. NO 
therapy is associated with relatively high costs, and this has been a 
determining factor in integrating its applications in routine therapy. 
However, this reasoning would not be relevant to its applications in 
COVID19, considering the global spending related to the disease. 
The evidence of NO’s ability to have a positive impact, based on the 
fundamental biochemical role of NO in hypoxemia, platelets, and 
potentially corona viral replication, calls for greater efforts to delineate 
NO’s role and harness its undeniable positive role in managing the 
current global COVID-19 crisis.
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