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Abstract
Inflammation is elevated in obese pregnant women and is associated with adverse maternal and neonatal outcomes. Maternal lipid metabolism and its relationships 
with maternal inflammation, insulin resistance and neonatal metabolic health are poorly understood in obese pregnant women. 

18 lean (age: 26.1 ± 5.0 years, pre-pregnancy BMI: 21.5 ± 1.9 kg/m2) and 16 obese (age: 25.0 ± 4.8 years, pre-pregnancy BMI: 36.3 ± 4.3 kg/m2) women participated 
in this case-control study during the third trimester of pregnancy.Maternal plasma markers of insulin resistance (HOMA-IR) and inflammation (C-reactive protein 
(CRP)) were measured at rest, and lipid concentration and kinetics (lipid oxidation rate and lipolysis) were measured at rest, during a 30-minute bout of low-intensity 
(40% VO2peak) exercise, and during a recovery period. Umbilical cord blood was collected for measurement of neonatal plasma insulin sensitivity, inflammation, and 
lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Pregnant obese women had higher plasma CRP (9.1 ± 4.0 
mg/L versus 2.3 ± 1.8 mg/L, p<0.001) and higher HOMA-IR (3.8 ± 1.9 versus 2.3 ± 1.5, p=0.009) compared to pregnant lean women. Obese women had higher 
lipid oxidation rates during recovery from low-intensity exercise (0.13 ± 0.03 g/min versus 0.11 ±0.04 g/min, p=0.02) that was associated with higher maternal CRP 
(r=0.55, p=0.001). Maternal CRP was positively associated with maternal HOMA-IR (r=0.40, p<0.02) and systolic blood pressure (r=0.40, p<0.02). Maternal lipid 
metabolism-associated inflammation may contribute to insulin resistance and higher blood pressure in obese women during pregnancy.

Introduction
Maternal obesity is a significant public health concern in the United 

States as one in three women enter pregnancy obese [1]. Maternal 
obesity is associated with increased risk of maternal complications 
including excessive gestational weight gain [2,3], gestational diabetes 
[4], preeclampsia and other hypertensive disorders [5-8], and long-
term maternal cardiovascular morbidity [9]. Obesity during pregnancy 
also contributes to unfavorable offspring metabolic outcomes including 
excess adiposity [10,11] and insulin resistance [12].

Obese women experience metabolic dysfunction during pregnancy 
including higher plasma inflammation and lower insulin sensitivity 
[4,13,14]. Inflammation and insulin resistance are interrelated and 
associated with adverse pregnancy outcomes [13,15-19]. Mechanisms 
contributing to elevated maternal inflammation during pregnancy in 
obese women are unclear.Evidence suggests that non-gravid, obese 
adults have elevated lipid oxidation rates at rest [20] and during low-to-
moderate intensity exercise [21,22], and that excessive lipid oxidation 
is associated with higher inflammation [23]. Elevated maternal lipid 
oxidation during pregnancy in obese women might contribute to 
increased maternal inflammation and subsequently altered maternal 
metabolic health. In addition, alterations in maternal lipid metabolism 
might impact offspring health as maternal obesity contributes to a 
lipotoxic placental environment that may be associated with increased 
in utero markers of inflammation and altered fetal development 
[24,25]. However, maternal lipid oxidation and its relationships with 
maternal and neonatal inflammation and metabolic health have not 
been previously examined.

The primary purposes of this study were to compare lipid oxidation 
rate and lipolysis during late pregnancy between obese and lean women, 
and to examine the relationships between maternal lipid metabolism, 
inflammation and insulin resistance. This study may identify lipid 
metabolism as a mechanism contributing to maternal inflammation in 
obese pregnant women.

Materials and methods
Subjects

Thirty-four women participated in the study (lean: n=18, obese: 
n=16). Women receiving prenatal care at the Women’s Health Center 
and Women’s Health Clinic at Barnes Jewish Hospital/Washington 
University between August 2013 and November 2014 were screened for 
inclusion. Approximately 350 women were screened, and 50 women 
who met all criteria with ongoing pregnancies were approached for 
participation late in their second trimester.Inclusion criteria included 
women ages 18-44 years, confirmed singleton viable pregnancy with 
no identified fetal abnormalities (as determined by routine anatomy 
ultrasound at 18-22 weeks), and pre-pregnancy BMI between 18.0 
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and 24.9 kg/m2 for the lean group or pre-pregnancy BMI between 
30 and 45 kg/m2 for the obese group. Exclusion criteria included: 
1) multiple gestation pregnancy, 2) inability to provide voluntary 
informed consent, 3) self- reported use of illegal drugs (cocaine, 
methamphetamine, opiates), 4) current smoker who did not consent to 
cessation, 5) current usage of daily medications by class: corticosteroids, 
beta-blockers (known to affect lipid metabolism) and anti-psychotics 
(known to alter insulin resistance and metabolic profiles), 6) diagnosis 
of gestational diabetes in current pregnancy, history of gestational 
diabetes, pre-pregnancy diabetes or prior macrosomic (>4500 g) infant 
(each elevate the risk for gestational diabetes in the current pregnancy, 
or undiagnosed gestational diabetes), 7) history of heart disease, or 8) 
any other condition that would preclude exercise.

Study procedures

All study procedures were performed at the Washington University 
School of Medicine Institute for Clinical and Translational Sciences 
Clinical Research Unit (CRU). All pregnant women participated in two 
maternal visits between 32 and 37 weeks gestation. Approval for this 
study was granted by the Institutional Review Board at Washington 
University (IRB ID: 201306109, NCT: NCT02039414).

Maternal visit 1

Body composition was measured using skinfold anthropometry 
in order to determine maternal percent body fat. Body fat percentage 
was determined by pressing folds of the skin at seven sites with a 
caliper (Harpenden Skinfolds Caliper, Baty International, United 
Kingdom), recording skin thickness, and entering the data into a 
standardized equation that accounts for age as previously described 
[26]. Participants also completed the YMCA submaximal cycle test as 
previously performed in order to predict cardiorespiratory fitness levels 
[27]. National Institutes of Health’s Dietary History Questionnaire II 
was completed by each participant to determine potential differences 
in maternal diet in the month leading up to study visits [28]. Previous 
literature demonstrates that dietary history questionnaires are valid 
and reproducible among pregnant populations [29].

Maternal visit 2

Approximately one week after Visit 1, subjects were admitted to 
the CRU the morning after an overnight fast. The night prior, subjects 
were instructed to consume a standardized meal consisting of 50% 
carbohydrates, 30% fats, and 20% protein. Upon admission to the 
CRU, height, weight, and vital signs were obtained. A catheter (IV) was 
placed in a hand vein and heated to 55°C by using a thermostatically 
controlled box in order to obtain arterialized blood samples as 
previously described [30]. Participants kept their hand in the box 
throughout the entire study visit. Participants rested for approximately 
30 minutes prior to measuring lipid oxidation rate using indirect 
calorimetry (True One 2400, Parvomedics, Sandy, UT). Participants 
laid supine while a canopy was placed over their head for 15 minutes 
to measure oxygen consumption and carbon dioxide production in 
order to determine lipid oxidation rate [31]. After the initial indirect 
calorimetry measurement, a baseline blood collection was obtained. 
Participants then exercised continuously at approximately 40% of 
their predicted VO2peak (based on the YMCA submaximal cycle test) for 
30 minutes. Lipid metabolism was examined via indirect calorimetry 
and plasma analysis during and after exercise because low-to-
moderate intensity exercise increases both adipose tissue breakdown 
(i.e. lipolysis) and lipid oxidation, and low-to-moderate intensity 
exercise might mimic their daily activity levels (~3-5 METS, e.g. 

household chores, caring for other children, walking). Exercise indirect 
calorimetry was performed and blood was drawn at the 10, 20, and 30 
minute time points of submaximal exercise. After exercise termination, 
participants returned to supine and blood was drawn 10, 30, and 60 
minutes-post cessation of exercise (i.e. recovery). Indirect calorimetry 
was performed 30 minutes post-exercise for 15 minutes as described 
for the baseline measurement. 

Sample analyses and calculations

All samples were immediately placed on ice and plasma was 
separated by centrifugation within 30 minutes of collection. Plasma 
samples were stored at -80°C until final analyses were performed. Blood 
samples for glucose were collected in heparinized tubes and analyzed 
immediately with an automated glucose analyzer (Yellow Springs 
Instruments Co, Yellow Springs, OH). Plasma insulin concentration 
was measured by electrochemiluminescence technology (Elecsys 2010, 
Roche Diagnostics, Indianapolis, IN). Insulin and glucose levels were 
used to calculate the homeostatic model assessment-insulin resistance 
(HOMA-IR) [32]. The HOMA-IR is an index of insulin resistance that 
reflects fasting glucose concentration measured at the fasting insulin 
concentration. Inflammation was examined through high-sensitivity 
C-reactive protein (CRP) and measured by immunoturbidimetric 
assay (Roach Diagnostics, Indianapolis, IN). Blood samples used to 
determine plasma free fatty acids were collected in in tubes containing 
EDTA. Plasma free fatty acid concentrations were determined by 
enzymatic colorimetric assay (Wako Pure Chemical Industries, Osaka, 
Japan). Lipolysis was calculated by the area under the curve (AUC) 
[33,34] for free fatty acids from baseline to the end of the study period. 
A summary score to represent total lipid oxidation rate throughout 
the study period was determined by calculating the AUC using lipid 
oxidation rates from baseline, exercise, and recovery time points. 
Clinical lipid profiles including triglycerides, total cholesterol, low-
density lipoprotein, and high-density lipoprotein were also obtained 
at the CRU.

Neonatal measurements

At parturition, neonatal birth weight was obtained. In addition, 
44 mL of umbilical vein blood was collected, centrifuged within 30 
minutes of parturition, and placed in a -80°C freezer for further 
analysis. Umbilical cord blood was used to determine neonatal HOMA-
IR (insulin and glucose levels), free fatty acid concentration, and CRP.

Within 48 hours of delivery, neonatal anthropometrics were 
measured in the CRU. Neonatal length (Pediatric Length Board, 
Ellard Instrumentation LTD, Monroe, WA) and head circumference 
(Gulick II Tape Measure, model 67020, Country Technology Inc., 
Gays Mills, WI) were measured. Body composition (fat and lean mass) 
was measured by skin fold thickness at four different sites (triceps, 
subscapular, ilium, and thigh, measured by one recorder) and by air 
displacement plethysmography (Pea Pod, Life Measurement, Inc., 
Concord, CA). All neonates were full-term (≥37 weeks gestation) at the 
time of delivery except for one in the obese group. This neonate’s data 
were excluded from the analysis.

Statistical analysis

Normality of the distribution for each variable was tested using 
Kolmogorov-Smirnov tests student’s Independent T-Tests for normally 
distributed variables and Mann-Whitney U tests for non-normally 
distributed variables were used to compare metabolic outcomes 
between lean and obese groups. Pearson product-moment correlation 
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coefficients for normally distributed variables or Spearman’s rank-
order correlation coefficient for non-normally distributed variables 
were used to assess the degree of the relationship between variables. 
Two-way repeated-measures ANOVAs (group x time) were used 
with Tukey post hoc analyses when comparing baseline, exercise, and 
recovery conditions. Study data were collected and managed using 
REDCap electronic data capture tools hosted at Washington University 
School of Medicine [35]. All data analyses were conducted using IBM 
SPSS Statistics, Version 22 (Armonk, New York).

Based on previous data comparing lipid metabolism between lean 
and obese females at rest and during exercise [22], we estimated an 
effect size of 1.1. Therefore, with an alpha level of 0.05, 16 women per 
group were required to power the study at β=0.80.

Results
Maternal demographic characteristics

Obese women had significantly higher pre-pregnancy body mass 

indexes and body fat percentages than the lean group (Table 1). Age, 
parity, income level, race, and gestation age during study visits were 
similar between groups (Table 1).

Maternal baseline metabolic characteristics

Maternal baseline metabolic characteristics are presented in Table 
1. Obese pregnant women had significantly higher plasma insulin 
concentration than lean pregnant women.HOMA-IR was higher in 
obese women compared to lean pregnant women. Obese pregnant 
women had higher plasma CRP concentration compared to lean 
pregnant women. Maternal systolic blood pressure was higher in obese 
pregnant women compared to lean pregnant women across all time 
points (F=3.90, p=0.03). CRP, HOMA-IR, and systolic blood pressure 
data are shown in Figure 1. Obese pregnant women had significantly 
higher resting energy expenditure compared to lean pregnant women 
(Table 1).

Dietary composition was similar between groups (Table 2). Three 
women (two lean, one obese) did not complete the dietary survey.

Lean (n=18) (Mean ± SD) Obese (n=16)    (Mean ± SD) p-value

Age (yrs) 26.1 ± 5.0 25.0 ± 4.8 0.52

Pre-pregnancy BMI (kg/m2)* 21.5 ± 1.9 36.3 ± 4.3 <0.001

Body fat percentage (%)* 20.7 ± 4.0 37.7 ± 3.5 <0.001

Gestation age at visit 2 (weeks) 35.2 ± 1.0 34.7 ± 1.4 0.25

Gestational weight gain (kg) 14.5 ± 4.5 10.3 ±  9.2 0.12

Heart rate (bpm) 84.1 ± 9.1 90.0 ± 10.8 0.08

Systolic blood pressure (mmHg) 107.3 ± 8.1 112.0 ± 10.9 0.16

Diastolic blood pressure (mmHg) 69.3 ± 7.6 71.5 ± 4.3 0.31

Glucose (mg/dL) 76.9 ± 5.5 80.3 ± 7.9 0.24

Insulin (uU/mL)* 12.3 ± 8.2 18.7 ± 8.4 0.01

HOMA-IR* 2.3 ± 1.5 3.8 ± 1.9 0.01

C-reactive protein (mg/L)* 2.3 ± 1.8 9.1 ± 4.0 <0.001

Total cholesterol (mg/dL) 228.4 ± 36.3 207.8 ± 35.9 0.11

HDL (mg/dL) 67.9 ± 18.2 65.1 ± 12.3 0.61

LDL (mg/dL) 130.2 ± 35.0 110.6 ± 34.0 0.24

Triglycerides (mg/dL) 151.8 ± 41.8 160.0 ± 60.9 0.65

Free fatty acids (meq/L) 0.47 ± 0.12 0.49 ± 0.15 0.64

Resting energy expenditure (kcal/day)* 1795 ± 225 2166 ± 291 <0.001

# of women (%) # of women (%) p-value (χ²-test)

Parity

0.93Nulliparous 11 (61%) 10 (63%)

Multiparous 7   (39%) 6 (37%)

Income

0.75Low income 10 (56%) 8 (56%)

Mod/high income 8 (44%) 8 (43%)

Race

0.73
Caucasian 8 (44%) 5 (31%)

African-American 9 (50%) 10 (63%)

Other 1 (6%) 1 (6%)

*p<0.05

Table 1. Maternal demographic and metabolic characteristics.
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Maternal lipid metabolism

Pregnant obese women had a higher post-exercise lipid oxidation 
rate compared to their lean counterparts (Recovery: 0.11 ± 0.04 g/
min vs. 0.13 ± 0.03 g/min, p=0.02) and tended to have higher lipid 
oxidation rates during baseline and exercise conditions (baseline- lean: 
0.10 ± 0.04 g/min vs. obese: 0.12 ± 0.03 g/min, p=0.13; exercise- lean: 
0.16 ± 0.09 g/min vs. obese: 0.22 ± 0.09 g/min, p=0.09) (Figure 2A). 
Total lipid oxidation was significantly higher in the obese group (lean: 

11.8 ± 5.4 g vs. obese: 15.3 ± 4.4 g, p=0.05) (Figure 2B). Lipolysis was 
similar between groups throughout the baseline, exercise, and resting 
conditions.

Correlations between maternal metabolic characteristics

CRP was positively associated with lipid oxidation rate at baseline 
(r=0.42, p=0.02) (Figure 3A) and during the 1-hour recovery period 
(r=.55, p=0.001) (Figure 3B). Maternal CRP was also related to total 
lipid oxidation (r=0.42, p=0.01) (Figure 3C). Similarly, baseline 
systolic blood pressure was positively correlated with lipid oxidation 
rate at baseline (r=0.34, p=0.05) and during the 1-hour recovery period 
(r=0.39, p=0.02). However, when accounting for CRP, the relationships 
between lipid oxidation rate and systolic blood pressure did not exist. 
Maternal CRP was positively correlated with maternal circulating 
insulin levels (r= 0.44, p=0.01), HOMA-IR (r=0.40, p=0.02) (Figure 
4A), and systolic blood pressure (r=0.40, p=0.02) (Figure 4B).

Neonatal anthropometric and metabolic outcomes 

Air displacement plethysmography was not performed on three 
neonates due to time of delivery relative to discharge, but all other 
neonatal anthropometrics were obtained. Cord blood could not 
be obtained from one lean and two obese participants.Neonatal 
anthropometrics and metabolic outcomes were similar between groups 
(Table 3).

Lean (n=16)        
mean ± SD

Obese (n=15) 
mean ± SD p-value

Energy intake (kcal/day) 2554.7 ± 1574 2058.7 ± 845 0.29

Fat (g) 94.6 ± 50.5 69.1 ± 31.2 0.10

Carbohydrate (g) 353.5 ± 256.2 295.4  ± 137.3 0.44

Protein (g) 84.1  ± 39.0 73.3  ± 35.9 0.43

Table 2. Average maternal daily dietary composition.

Figure 1. Maternal (A) inflammation (B) insulin resistance (C) systolic blood pressure 
between lean and obese pregnant women. Obese women have higher plasma CRP 
concentrations (A) higher insulin resistance (HOMA-IR) (B) and higher systolic blood 
pressure (C) than lean women during late pregnancy. All data are mean ± SD. *p<0.05.

B

Figure 2. (A) Lipid oxidation rates between lean and obese groups at baseline, during 
exercise, and during recovery from exercise (B). Total lipid oxidation measured by AUC 
across all timepoints between lean and obese pregnant women. Lipid oxidation rates are 
higher in obese pregnant women, particularly during post-exercise recovery (A), and a total 
lipid oxidation is higher in obese pregnant women compared to lean pregnant women (B). 
All data are mean ± SD.  *p<0.05.
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Discussion
Our primary novel findings from the study were: 1) maternal 

lipid oxidation was higher in obese pregnant women compared to 
lean pregnant women, particularly following an acute bout of low-
intensity exercise, 2) maternal lipid oxidation rate was significantly 
associated with maternal inflammation, and 3) maternal inflammation 
was related to maternal insulin resistance and systolic blood pressure. 
These results suggest that elevated maternal lipid oxidation might 
contribute to increased inflammation and subsequent reductions in 
insulin sensitivity during late pregnancy in obese women. Importantly, 
we believe the finding of elevated lipid oxidation rates in obese 
pregnant women following a mild bout of physical activity is clinically 
meaningful as this metabolic environment would be representative of 
women who recently participated in typical daily physical activities (e.g. 
running errands, cleaning the house, or taking care of another child). 
Lipid oxidation rate in non-gravid adults is known to increase over 
resting values during low-to-moderate physical activity and remained 
elevated for 2-3 hours post-exercise [36,37].

In the current study, higher rates of maternal lipid oxidation during 
rest and post-exercise recovery were associated with greater maternal 
inflammation. In non-gravid adults, lipid oxidation is intricately 
related to inflammation and insulin resistance [23,38]. Specifically, 
lipid oxidation by-products including reactive oxygen species have 
been shown to signal pathways that initiate an inflammatory response 
[23,39,40]. The current study also found that higher maternal 
inflammation was associated with higher insulin resistance, suggesting 
that maternal inflammation, possibly the result of increased lipid 
oxidation by-products, might contribute to higher maternal insulin 
resistance in obese pregnant women. Our results are consistent with 
Retnakaran et al. who demonstrated obesity during pregnancy elicits an 
inflammatory response with possible downstream metabolic sequelae 
including insulin resistance [41]. Similarly, Korkmazer et al. found 
higher inflammation among insulin resistant pregnant women with 
and without a classification of gestational diabetes [42]. The clinical 
implications of this could be substantial as the combination of obesity 
and insulin resistance during pregnancy can lead to gestational diabetes 
[13]. Consequently, offspring of obese, insulin resistant women are at 
increased risk of preterm delivery and associated neonatal morbidity, 
as well as childhood metabolic dysfunction which may potentiate the 
vicious cycle of obesity and insulin resistance [13]. Taken together, 
these data suggest a relationship between maternal lipid metabolism, 
inflammation, and insulin resistance in obese women during 
pregnancy.

In the current study, lipid profiles were similar between lean and 
obese pregnant women (triglycerides, total cholesterol, low-density 
lipoprotein, high-density lipoprotein). While maternal obesity is 
associated with increased higher plasma concentrations of triglycerides 

Figure 3. Relationships between CRP and (A) baseline lipid oxidation rate, (B) post-
exercise recovery lipid oxidation rate, and (C) total lipid oxidation. Maternal plasma CRP 
concentration is significantly correlated to lipid oxidation rate at baseline (A), during 
recovery (B), and to total lipid oxidation (C). *p<0.05.

B

Figure 4. Relationships between baseline maternal inflammation and (A) insulin resistance 
(B) systolic blood pressure. Maternal plasma CRP concentration is significantly correlated 
to maternal insulin resistance (A) and maternal systolic blood pressure (B).  *p<0.05.
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and low-density lipoproteins early in pregnancy [43], lean and obese 
women reach similar concentrations during late pregnancy [43]. Our 
data, measured during late pregnancy, are reflective of the literature 
demonstrating similar lipid profiles between lean and obese pregnant 
women. Similarly, maternal and neonatal free fatty acid concentrations 
in the current study were consistent with Catalano et al. who reported 
free fatty acid concentrations in obese women and their fetuses were 
not different than lean pregnant women [43,44].

Although not a primary focus of the study, we also found a 
relationship between maternal inflammation and resting systolic 
blood pressure. Maternal systemic inflammation is a known feature 
of preeclampsia, a pregnancy-specific condition characterized by high 
blood pressure [45]. In fact, Redman et al. suggest that preeclampsia 
is ultimately an excessive maternal inflammatory response to 
pregnancy [46]. High blood pressure disorders during pregnancy, 
including preeclampsia, are an important cause of morbidity, long-
term disability, and even death among pregnant women and their 
offspring [47]. Inflammation has been identified as a key contributor 
to pregnancy-specific high blood pressure [46,48] and our findings are 
consistent with this.

Oxidative stress could provide a link connecting increased 
maternal lipid oxidation with inflammation and subsequent insulin 
resistance and hypertension in obese pregnant women. In non-gravid 
adults, oxidative stress is elevated in obesity [49] and is associated 

Neonatal demographic characteristics Lean (n=18)  mean ± SD Obese (n=16)  mean ± SD p-value

Gestational age at delivery (weeks) 39.1 ± 0.9 39.5 ± 1.4 0.33

Birth weight (g) 3221.6 ± 377 3344 ± 428 0.57

Length (cm) 49.5 ± 2.2 49.9 ± 2.0 0.88

Head circumference (cm) 33.7 ± 1.7 34.4 ± 1.2 0.22

Fat mass (%) 11.1 ± 4.3 11.2 ± 3.6 0.98

Skinfolds (cm)

Triceps 4.9 ± 0.8 5.1 ± 1.1 0.61

Subscapular 4.4 ± 0.8 4.4 ± 0.9 0.97

Ilium 4.7 ± 1.3 5.2 ± 1.4 0.56

Thigh 6.4 ± 1.3 6.9 ± 1.9 0.45

# of women (%) # of women (%)

Mode of Delivery

Vaginal 14 (78%) 9 (56%)
0.27

Cesarean 4 (22%) 7 (44%)

Gender

Male 7 (39%) 10 (63%)
0.30

Female 11 (61%) 6 (37%)

Neonatal cord blood values Lean (n=17) mean ± SD Obese (n=14) mean ± SD p-value

Glucose (mg/dL) 88.4  ± 14.0 80.7  ± 12.8 0.13

Insulin (uU/mL) 7.9 ± 6.2 7.5 ± 4.9 0.98

HOMA-IR 1.7  ± 1.5 1.6  ± 1.2 0.68

Free fatty acids (meq/L) 0.19 ± 0.08 0.16 ±0.06 0.28

C-reactive protein (mg/L) 0.20 ± 0.10 0.24 ± 0.21 0.55

*p<0.05

Table 3. Neonatal anthropometric and metabolic outcomes.

with inflammation, vascular cell wall damage, high blood pressure, 
cardiovascular disease, poor metabolic function, and insulin resistance 
[50-58]. It is possible that elevated lipid oxidation rates observed in 
obese pregnant women generate partially-oxidized byproducts (i.e. 
reactive oxygen species); however, this is speculative and requires 
further study. Figure 5 depicts proposed pathway for the role of 
maternal on lipid metabolism and long-term maternal and neonatal 
outcomes.

Neonates of pregnant obese woman had similar body composition, 
insulin sensitivity, and inflammatory markers as lean pregnant 
women. These results suggest that despite the metabolic abnormalities 
associated with obesity during pregnancy, the fetus may be protected 
from some of these detrimental effects, at least at 24-48 hours post-
parturition. However, the “fetal origins hypothesis” suggests the 
origins of adult health diseases such as obesity, cardiovascular disease, 
and diabetes may be caused by in utero exposures [59,60]. Therefore, 
it is plausible that metabolic abnormalities may be epigenetically 
programmed, but are not apparent or measurable until later in life. 
For example, Liebowitz et al. found that offspring of obese women 
had higher plasma inflammation at 12 years of age [61]. Offspring of 
obese women with elevated plasma inflammation during pregnancy 
may develop inflammation as they age as a result of fetal programming; 
however, these changes may not be detectable at delivery when 
umbilical cord blood is obtained. Similarly, Whitaker concluded that 
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obesity during pregnancy more than doubles the risk of obesity in the 
offspring between ages two and four [43,62]. Although neonatal body 
composition in our study was not different between lean and obese 
pregnant women, it is possible that differences might emerge during 
the preschool and childhood years. It is also plausible that our sample 
size was not large enough to detect a difference in birth weight or body 
composition as it is well-accepted that obese women have larger babies 
[10,11]. Based on our findings and the current literature, longitudinal 
studies of offspring born to obese women are needed.

A limitation of the present study was the observational study 
design, thus, cause-and-effect relationships could not be determined 
from these data. Our results should be cautiously interpreted as 
this pilot study was powered based on our primary outcome of 
lipid oxidation rate. We are not adequately powered to investigate 
many other maternal and neonatal outcomes. Bias may have been 
introduced because measurements and assessments were not blinded 
(it was obvious who was an obese “case” versus a lean “control”), but 
uniform data collection procedures were followed for all participants 
to minimize bias.

In conclusion we found that obese pregnant women have higher 
lipid oxidation rate, particularly after an acute bout of low-intensity 
exercise during late pregnancy. In addition, higher maternal lipid 
oxidation rates were associated with higher maternal inflammation. 
Maternal inflammation was related to insulin resistance and systolic 
blood pressure. We did not find any differences in neonatal metabolic 
outcomes between lean and obese women. Future studies investigating 
the role of maternal lipid oxidation-produced oxidative stress and 
interventions targeting lipid metabolism and inflammation to improve 
maternal and neonatal health in obese pregnant women are warranted.
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