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Abstract
There have been many recent advances in epilepsy. Here only a few advances have been selected from large numbers of publications during 2013-2015. Many 
important publications (inflammation in neurological diseases, optokinetic therapies, functional MRI etc.) that would have been worth of presentation were not 
included. The following four topics were chosen: enlarged indication of ketogenic diet, restriction of use of valproate for women, targeted gene therapy for epilepsy, 
and advances of animal studies. The selection of these topics were based on the personal interest of the writer.
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Commentary
In this short review the following high-lights of epilepsy 2015 

were selected and presented by me at EPNS Congress in 11th European 
Pediatric Congress, May 30 2015 in Vienna.

1. Ketogenic diet

2. Valproate and pregnancy

3. New gene-targeted therapies

4. Animal models

High-lights

The indication of ketogenic diet (KD) have been broadened [1,2]: 
Its indications have been in refractory infantile spasms [3], Lennox-
Gastaut syndrome [4]. Now it has been recommended as therapy in 
Dravet syndrome [5], Rett syndrome [6] and Glut-1 deficiency [7,8]. 
Hallbook et al. 2015 [9] has published a retrospective study in 290 
children from Scandinavian countries with KD which was effective, 
even in patients with severe therapy-resistant epilepsy. Use of dietary 
therapy for status epilepticus is a new indication of KD [10]. A significant 
improvement in seizure-frequency was seen in atonic seizures at three 
months and secondary generalized seizures at three months and six 
months of ketogenic diet. It was effective and well-tolerated treatment 
option for patients with refractory status epilepticus [11,12]. In super-
refractory status epilepticus it has been used intravenously when two 
treatments have been ineffective. [11,13].

Valproic acid (VPA) and pregnancy: There has been recent 
restrictions of VPA use: “VPA should not be used to treat epilepsy in 
women who are pregnant or who can become pregnant unless other 
treatments are ineffective or not tolerated. Women for whom valproate 
is the only treatment is the only option after trying other treatments, 
should use effective contraception and treatment should be started and 
supervised by a doctor experienced in treating these conditions.” This 
statement was made by European Pharmacovigilance Risk Assessment 
Committee (PRAC) October 2014 [14].

However, later (2015) there came less restrictive recommendations 
by ILEA: Valproate in the treatment of epilepsy in women and girls 
[15] including the following statements:

•	 “Not as a first-line treatment for focal epilepsy

•	 May be offered as 1. line treatment for epilepsy syndromes 
where it ismost effective treatment or

•	 where pregnancy isunlikely

•	 Risk/benefit assessments should bemade.”

New gene-targetedtherapies: Many forms of epilepsy are likely to 
have a genetic background. There has now been an explosion of genetics 
in epilepsy. Earlier, it has been questioned if genetic information helps 
us to treat patients. “Pro--genetic information in humans helps us to 
treat patients. Con--genetic information does not help at all” [16].

The importance of improved understanding of the genetics of 
epilepsies is now confirmed by the positive outcomes, in terms of 
treatment selection and counselling after receiving a genetic diagnosis 
[17]. “Epilepsy genetics revolutionizes clinical practice” [18].

In fact, there are already few new gene-targeted therapies. An 
example is given here.

KCNT1 and quinidine: Migrating partial seizures of infancy is an 
early onset epileptic encephalopathy syndrome that is typically resistant 
to treatment. The most common cause is a gain of function in the 
potassium channel KCNT1. De novo gain-of-function KCNT1 channel 
mutations cause malignant migrating partial epilepsy [19]. Missense 
mutations in the sodium-gated potassium channel gene KCNT1 
cause severe autosomal dominant nocturnal frontal lobe (ADNFLE) 
epilepsy [20]. The antiarrhythmic drug quinidine is a partial antagonist 
of KCNT1 and hence may be a candidate drug for treatment of this 
condition. It may rescues mutant channels. Treatment with quinidine 
reduced markedly seizure frequency and improved psychomotor 
development [21,22].
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Mammalian Target of Rapamycin(m-TOR): The m-Tor pathway 
is the master regulator of cell growth and homeostasis. The target of 
rapamycin is a serine-threonine kinase. M-Tor activation is repressed 
at the lysosomal membrane in response to the metabolic stress of 
amino acidstarvation.

Tuberous sclerosis(TS): TS has been attributed to mutations in the 
TSC1 and TSC2 genes. These genes, known as tumor suppressors, are 
responsible for the inhibition of m-Torpathways. Mutations of these 
genes cause hyperactivation of the m-Tor system and result in excessive 
cell growth and hamartomatous tumors in multiple organs [23].

Rapamycin prevents epilepsy in a mouse model of tuberous 
sclerosis complex [24]. In humans, rapamycin treatment of refractory 
epilepsy in tuberous sclerosis complex has been recently been shown 
effective [25,26].

DEPDC5 (DEP domain-containing protein 5) mutation: 
DEPDC5 gene mutations cause focal non-lesional focal epilepsy and 
focal dysplasia [27]. It is the first gene for non-lesional focal epilepsy 
(7/8 families with familial focal epilepsy with variable foci (FFEVF) had 
DEPDC5 mutations). Penetrance is on average 66%.

DEPDC5 gene mutations for focal variable familial epilepsy with 
variable foci and in more 10% (10/82 patients) of small families with 
non-lesional focal epilepsy [28]. This high frequency establishes 
DEPDC5 mutations as a common cause of familialfocal epilepsies. 
DEPDC5 has also recently been reported in a broad spectrum of 
inherited epilepsies (ADNFLE, familial temporal lobe epilepsy (FTLE) 
and FFEVF [29]. No clinical evidence of multisystem involvement was 
found in individuals with DEPDC5 mutations. Because DEPDC5 acts 
as a repressor of m-TOR activity.DEPDC5 mutations are predicted to 
result in excessive m-TOR signaling. Consistent with this, individuals 
with DEPDC5 mutations share similar features with patients with 
other m-TORopathies such as tuberous sclerosis with dysplastic 
lesions, focal epilepsy, autism spectrum disorders, and intellectual 
disability. Mammalian target of rapamycin pathway mutations cause 
hemimegalencephaloly and focal cortical dysplasia [30].

Animal models: Animal models of epilepsy give information on 
candidate new therapies, insights on etiology-based pathogenesis and 
epileptogenesis. Several models have tested the impact of subclinical 
epileptiform discharges on brain function. There are 5 models for 
infantile spasms (CRH/stress: betamethasone, NMDA model, TTX, 
multiple-hit models, ARX knockout, Down syndrome. There are 
models for Dravet syndrome and Tsc2+/- mouse model of tuberous 
sclerosis [31].

Conclusions
The high-lights presented here are diverse items that have been 

very recently published. Some of them are of practical interest. Few 
gene targeted therapies are already available. Candidate new therapies 
based on animal experiments are promises for the future.
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