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Abstract
Regardless of the success of Genome Wide Association Studies (GWAS) to identify genetic variants associated with human diseases, investigating the molecular 
mechanisms and disease-associated genes linked to those genetic variants, is a very complex task. Specifically, where intergenic genetic variants are linked to 
the adjacent neighbouring genes. Consequently, the inference for the mechanistic connection between diseases and its susceptible genetic variants becomes more 
challenging.

Functional genomics studies can support to reveal the significance of variants via intermediate molecular traits. Moreover, approaches like computational and 
bioinformatics predictions based on the variants location and its sequence attributes can assist to propose the candidate genes. As, the spectrum of potential functional 
consequences of variants is much broader; it still requires new methodologies to predict any molecular level perturbation. Thus, specialized algorithms and computable 
modelling approaches are essential, for the modelling and simulation of genetic regulatory networks.

In this review, we are briefly summarizing all the existing methodologies for genome wide association studies, currently available algorithms and computable 
modelling approaches; moreover also emphasizing the required new approaches for modelling and simulations of genetic regulatory networks to predict the functional 
consequences of disease-associated genetic variants.
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Introduction
Genome-wide association studies (GWAS) are well established 

in human genetics. In total, GWAS are possibly the largest molecular 
biology investigations of human beings ever conducted. The total 
number of people, who have been genotyped in GWAS studies, exceeds 
1 Million. Major insights have been possible based on GWAS studies: 

a.	 Many common diseases have a polygenic architecture,

b.	 The genetic effect sizes of common Single nucleotide 
polymorphism (SNP) variants are small,

c.	 The identification of the involvement of genes and biological 
processes not previously suspected, and 

d.	 The association of some loci with different diseases. 

GWAS have identified thousands of SNPs, known as lead-SNPs, 
which are associated with hundreds of human traits and diseases [1,2]. 
These lead-SNPs capture the variation present at risk-associated loci, 
but do not necessarily represent causal genetic variants that underlie 
the molecular mechanism of the association [1]. With the original lead-
SNP, a collection of genetic variants at each risk-associated locus, all 
putatively causal, are in linkage disequilibrium (LD) according to the 
initial design of the GWAS studies [3,4]. Those genetic variants, which 
are within a risk-associated locus and in strong LD with the lead-SNP 
could account for the observed difference in phenotype associated with 
that locus.

The ultimate goal for the post-GWAS era is to highlight those 
specific genetic variants identified within a risk-associated locus that 
account for phenotypic differences based on the functional biology they 

modulate. However, more than 88% of disease-associated variants fall 
into non-coding regions of the genome [1], which makes it extremely 
challenging to generate testable hypotheses about the functional 
involvement of neighbouring genes. Even for SNPs in genic regions, it 
remains often unclear, whether they are functional due to the presence 
of several closely linked variants. A variety of statistical methods have 
been proposed to prioritize GWAS signals by incorporating diverse 
functional evidence [5]. GWAS identified variants can be prioritized at 
both, the SNP level and gene level, depending on the biological features 
considered and the input signals available.

Until recently, the functional characterization of risk-associated loci 
was limited by the incomplete annotation of non-coding sequences in 
the human genome. Population-based studies have revealed that non-
coding genetic variants are linked with gene expression [6–9], RNA 
splicing [10], transcription factor binding [11], chromatin openness 
measured by DNase I hypersensitivity [12], DNA methylation [13], 
and histone modifications [14–16]. Additionally, SNPs are more 
commonly linked with a particular phenotype if they fall within a 
DNase I hypersensitive region from a disease relevant cell type [17].  
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Likewise, with the integration of other data informative about 
trait association (like gene expression, expression quantitative trait 
loci (eQTL) and others), the prioritized genes/loci are more likely to 
be truly associated with a trait. For instance, there is accumulating 
evidence that trait-associated loci are more intense in regions with 
certain genomic features, such as protein coding regions and eQTL [5].

A series of large-scale genomics projects, including the Encyclopedia 
of DNA Elements (ENCODE) [18,19], the International Human 
Epigenome Consortium (IHEC) [20], the Roadmap Epigenomics 
[21] and the Functional Annotation of the Mammalian Genome 
(FANTOM) [22] projects, as well as independent labs have undertaken 
significant effort to systematically annotate non-coding regions of the 
human genome in several different cell and tissue types and across 
several developmental stages. 

These large-scale studies have profited from advances in next 
generation sequencing technologies to generate genome-wide maps 
of functional elements, such as origins of replication, transcripts and 
regulatory elements. RNA-sequencing (RNA-seq) and cap analysis 
of gene expression sequencing (CAGE-seq) approaches led to the 
identification and annotation of known as well as novel transcripts 
such as long non-coding RNA (lncRNA) and enhancer RNA (eRNA) 
[23–25]. Whole-genome epigenetic mapping (WGEM) for histone 
modifications through chromatin immune-precipitation sequencing 
(ChIP-seq) identifies regulatory elements including promoters, 
enhancers, and insulators [26–30]. 

Moreover, inter-species evolutionarily conserved DNA sequences 
can complement these maps by predicting potential functional DNA 
elements [31,32]. Taken together, such biological information, across 
the human genome, assist as the foundation for post-GWAS functional 
studies.

Genetic variants and their detection power
Genome wide association studies (GWAS)

Over the last years, GWAS have established as popular approaches 
for the identification of genetic variants that are associated with disease 
risk loci. In a standard GWAS study design; a case control comparison 
to assess the association between each individual genotyped SNP and 
disease risk is performed. Very often, a discovery phase in which an 
initial set of promising susceptibility loci is identified, is followed by a 
confirmation stage in which the SNPs identified in the initial stage are 
replicated in a separate study cohort [33]. The standard methodology 
for analyzing GWAS in the discovery phase consist of individual SNP 
analysis, then SNPs are ranked on the basis of their individual p-values 
and a threshold is set such that all SNPs with p-value less than that 
threshold will be validated further. 

However, with this individual-SNP analysis, reproducibility is very 
limited, since multiple high-ranked SNPs in the discovery phases are 
false positives and cannot be verified [34]. Besides, the true causal SNP 
(if it exists at all) is rarely genotyped; instead, other typed SNPs which 
are in linkage disequilibrium (LD) with the causal SNP, are being 
measured and these “related SNPs” may show only moderate effects 
at mechanistic level and – as a consequence – moderate association 
with the disease phenotype. Therefore, a locus-centric analysis could 
be beneficial to consider the joint effect of multiple SNPs in analysis 
as it is likely that several of these markers are in LD with the causal 
SNP and could show the true effect more effectively [35]. Additionally, 
individual SNP analysis only considers the marginal effect of each SNP 

and cannot detect epistatic effects. Epistatic interactions between SNPs 
can contribute to disease susceptibility [36]. 

The statistical power of a GWAS is a function of sample size, 
effect size, causal allele frequency, and marker allele frequency and 
its correlation with the causal variant [37]. Because GWASs are 
underpowered to detect associations of modest effect sizes (odds ratio 
(OR) = 1.1–1.5) [38-40], large population samples are required to 
detect variants of even moderate effect (OR = 1.5–2). Meta-analyses 
of independent GWASs for a trait reap the full benefit of GWASs 
that have already been performed, greatly increasing sample size and 
statistical power. When different GWASs use different genotyping 
platforms, only a minority of the SNPs are in common to all platforms. 
Imputation methods have been developed to infer genotypes at un-
typed SNPs using a reference panel of more densely genotyped samples 
[41]. After imputation, GWAS results can be combined across multiple 
studies [42].

For meta-analysis, it would be ideal to include the raw data as a 
covariate for all studies contributing to the analysis, but meta-analysis 
could also be done without the use of the raw genotypes. It calculates 
the effect size that each study attributes to the genetic variant and 
weighted according to the relevant study size. In such analysis, small 
studies contribute less than large studies because they are likely to give 
less accurate effect-size estimates [43].  The significance of any given 
effect size can be determined by the size of the sample studied. The 
simple equation is:	 Significance Test = Effect Size x Study Size

As an alternative, a natural grouping strategy has been proposed. 
This approach is based on the grouping of SNPs into SNP sets based 
on proximity to genomic features such as genes or haplotype blocks; 
it can significantly reduce the number of multiple comparisons [34]. 
An extension of gene-based SNP set analysis is to group SNPs based 
on whether they are located within a pathway represented in Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [44] or a Gene Ontology 
Consortium functional category [45]. Even though, making inference 
on a pathway further reduces the number of multiple comparisons, 
but it still allows inference on a biologically meaningful unit [34].  It is 
noteworthy in this context, that the functional context represented by 
pathways (e.g. in KEGG) can be expanded towards entire computable 
disease models (e.g. in Biological Expression Language (BEL) [46].

Functional impact of genetic variants at molecular level 
The functional impact of SNPs should be closely linked to their 

interference with (or modulation of) normal physiological functions. 
As, some SNPs are very likely to directly interfere with bio-molecular 
functions of genes and genomic regions whereas other SNPs can only 
convey susceptibility of human diseases by yet unknown mechanisms 
[47].

Following section describes the different functional categories that 
can be articulated as “mode-of-SNP-action” classes. 

Genetic variants on coding regions 
Protein Coding SNPs have been most extensively studied due to 

their direct effect on the function of that encoded protein. 

Non-synonymous genetic variants

Proteins have a unique sequence of amino acids specified by the 
coding DNA, and a modification to its sequence can significantly 
impact its function [48]. The risk associated with non-synonymous 
genetic variants (nonsense or missense) can easily be translated into 
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a change in protein structure or function due to change in amino 
acid sequence. Non-synonymous SNPs can modify amino acid 
composition, or truncate the protein sequence by causing an early 
codon [49]. Indels (insertion or deletion of nucleotide base(s)) can 
also alter protein sequence with varying consequence depending on 
whether the indel is in-frame or frame-shifting, and this substitution 
may affect protein folding, proper activity of binding or interaction 
sites, structure, stability or solubility of the protein. For example, the 
rs1990760 SNP associated with type 1 diabetes (T1D), is an example of 
a non-synonymous genetic risk variant of IFIH1 (interferon induced 
with helicase C domain 1) gene, causing an alanine to threonine 
substitution at position 946 (A946T) of the IFIH1/MDA5 protein [49]. 

Synonymous genetic variants

Synonymous genetic variants do not alter the codon sequence 
and consequently cannot encode any change in protein sequences. 
However, synonymous genetic risk variants can still impact protein 
function by modulating translation rates with direct consequences to 
protein folding [50]. As an example, we will discuss here the rs1045642 
SNP that maps to the MDR1 (Multidrug Resistant-1) gene [51,52]. The 
MDR1 gene (ABCB1 - relevant human gene) encodes a cell membrane 
transporter protein involved in drug trafficking [53] and the rs1045642 
SNP changes the drug substrate specificity of MDR1 but does not 
influence the sequence or the expression of the MDR1 protein [52]. 
Due to the rs1045642 SNP, the frequent isoleucine (Ile) codon ATC 
replaces by the rare Ile codon ATT [52]. It has been suggested that 
this alteration slows down the rate of translation of the MDR1 mRNA, 
and this impacts protein folding [54], and that the subsequent altered 
MDR1 conformation decreases its drug substrate specificity [51–53]. It 
has also been shown that a fraction of codons specify not only an amino 
acid, but a transcription factor binding site, providing an additional 
avenue through which synonymous polymorphisms may impart a 
functional effect [55]. 

Splice site genetic variants

Splicing is a process, in which introns are excised and exons 
are joined, at RNA sequence level [56]. Exonic splicing enhancers 
(ESEs) comprise specific hexamer sequences and an AG sequence at 
the intron-exon borderline that instruct for the recruitment of the 
splicing complex to immature RNA (pre-mRNA) and lead for intron 
excision and exon joining. SNPs may also present within exon splicing 
enhancers or silencers (ESEs/ESSs). ESEs and ESSs are typically 6 to 
8 consecutive nucleotide sequences in an exon region. Similar to the 
SNPs occurring in splice sites, SNPs within ESEs or ESSs can also result 
in deleterious intron retention or exon skipping [56–59]. SNPs and 
indels can also interrupt splicing sites to translate the protein isoform. 
A mechanistic insight, how a SNP can affect splicing, is provided 
through the rs1800693 SNP example. This SNP is located at the edge 
of exon/intron of the TNFRSF1A (tumour necrosis factor receptor 
superfamily member 1A) gene and is associated with multiple sclerosis. 
The SNP affects the splicing of the TNFRSF1A mRNA and leading to 
translate an isoform [60].

Genetic variants on non-coding regions
Mammalian regulatory interactions can take place over significant 

chromosomal distances up to an entire megabase (1MB) [61]. Genetic 
risk variants are very frequent on non-coding sequences [62]. Post-
GWAS studies have revealed the capacity of these genetic risk variants 
to regulate gene expression by modulating cis-regulatory machineries 
through mechanisms involving DNA methylation [63], transcription 

factor binding [64], chromatin looping [65], or miRNA recruitment 
[66]. Databases that provide information of experimentally verified 
transcriptional regulatory regions can be used to identify SNPs that can 
alter gene expression like HTRIdb [67].

DNA methylation and genetic variants at promoters

DNA methylation means addition of methyl groups to a cytosine 
nucleotide, which is basically part of a CpG dinucleotide. This 
DNA methylation is a heritable epigenetic event, which is involved 
in transcriptional regulation [68]. DNA hyper-methylation near 
transcription start sites (TSS) of tumour suppressor genes associates 
with their silencing [68]. For instance, the HNF1B (hepatocyte nuclear 
factor 1 homeo-box B) gene is silenced by DNA methylation in serous 
ovarian tumours. The rs7405776 SNP defines a risk locus for intrusive 
serous ovarian cancer that is located within the promoter region of the 
HNF1B gene. This risk-associated locus, at the HNF1B gene promoter 
region, is located in a CpG island and is associated with higher DNA 
methylation levels [10].

Transcription factor binding to the chromatin and genetic 
variants

Across the genome, transcription factors bind to thousands of 
regulatory elements, including promoters directly upstream of their 
target genes and cis-regulatory elements such as enhancers, insulators 
and silencers [69]. ChIP-seq assays for transcription factors effectively 
annotate these cis-regulatory elements genome-wide. Analysis of these 
annotations reveals that genetic risk variants commonly target cis-
regulatory elements, mainly enhancers, in a disease- and tissue-specific 
manner [17,27,70-73]. For example, loci associated with erythrocyte 
phenotypes commonly harbour enhancers that are functional in K562 
erythrocyte leukemia cells, but not enhancers that are functional in 
other cell types [27]. 

Genetic risk variants located within promoter regions can also 
change transcription factor binding to DNA, leading to differential 
target gene expression [74,75]. For example, expression of the 
a-globin gene locus is affected by a genetic variant associated with 
the a-thalassemia blood disorder [74]. That genetic variant creates 
a GATA1 motif at a promoter-like region that down-regulates the 
expression of the downstream a-globin genes [74]. Down-regulation of 
a-globin genes promotes a-thalassemia [76]. 

Enhancers are commonly targeted by those genetic variants of 
risk-associated loci that map to DNA recognition motifs, bound by 
transcription factors. These genetic variants can modulate the chromatin 
affinity for transcription factors and consequently gene expression [77–
82]. One example for this type of functional impact is the rs1427407 
SNP, which is associated with fetal hemoglobin level. It decreases 
the recruitment of the GATA1 (GATA binding protein 1)/TAL1 (T 
cell acute lymphocytic leukemia 1) nuclear complex to the enhancer 
region, and results in lower levels of expression for the BCL11A (B cell 
CLL/lymphoma 11A) gene, a repressor of the fetal hemoglobin level 
[78]. Likewise, the rs12740374 SNP, which is associated with a lower 
level of plasma low-density lipoprotein cholesterol (LDL-C), shows 
higher expression level of the SORT1 (sortilin 1) gene by increasing 
the binding affinity of the C/EBP (CCAAT enhancer-binding protein) 
transcription factor to chromatin [79]. Over-expression of SORT1 
leads to a lower LDL-C level in livers [79]. Moreover, functional 
variants within a single risk locus can modulate multiple different 
enhancers. This multi-enhancer variant phenomenon was found to be 
a fundamental feature of many risk loci [83]. 
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Chromatin loop formation bridging enhancers and 
promoters and genetic variants 

Genetic risk variant can modulate chromatin loop formation, it 
can alter the DNA affinity for looping factors, which can also result 
in allele-specific chromatin loop formation. The human genome is 
structured in a three dimensional architecture which is thought to 
regulate a diverse set of DNA-templated processes [84–88]. This 
facilitates regulatory elements, like promoters and enhancers, to 
interact physically through long-range chromatin loops, or chromatin 
interactions, to regulate gene expression [89,90]. This has been shown 
for the rs12913832 SNP, which resides in an enhancer 21 kb upstream of 
the OCA2 (Oculocutaneous albinism II) pigment gene. This particular 
SNP is a human pigmentation-associated SNP, which interferes with 
(modulates) allele-specific chromatin loop formation [91]. 

Recent studies have analyzed CTCF (CCCTC binding factor) [92] 
and cohesin [93,94] binding sites, DNase-hypersensitive sites [95] and 
putative enhancers [96] on a genome-wide scale. If a minor fraction of 
these potential regulatory elements participate in chromatin looping, 
then most of the genomic interactions have yet to be characterized 
again, because many such loops appear to be tissue-specific [97-
99], which makes their comprehensive analysis appear even more 
disconcerting [100].

Genetic variants and miRNAs

MicroRNAs (miRNAs) target mRNAs by recognizing their 
complementary sequences mainly in 3’ untranslated regions (3’UTRs). 
miRNAs largely function as post-transcriptional repressors. They 
recruit RNA-induced silencing complex (RISC) to their target mRNAs, 
leading to mRNA degradation or translation repression [101]. They can 
regulate the translation of hundreds of genes through sequence-specific 
binding to mRNA [102]. Abelson et al. showed that SNPs linked to 
miRNA can affect disease phenotype, they identified a mutation, 
residing in the ‘miR-189’ binding site of gene SLITRK1 (SLIT and 
NTRK-like protein 1) that was associated with Tourette’s syndrome 
[103].

SNP variants, linked with miRNAs, can affect gene functionality 
with three different ways: 1) by transcription of primary transcript, 2) 
by pri-microRNA and pre-microRNA processing and 3) by effecting 
the microRNA- microRNA interaction [104]. For instance, SNPs, 
reside in the pri regions of let-7e and mir-16, reduce the levels of 
mature micRNA [105,106]. Thus, SNPs located in miRNA binding 
site of target mRNAs can interrupt miRNA-dependent regulation 
and eventually effect gene expression in cancer, like a miRNA from 
let-7 family binds to 3’UTR region of the gene RAS and regulates its 
expression level [107].  For example, the rs100672, a Crohn’s disease-
associated SNP, lies within the 3’ UTR of the IRGM (immunity-related 
GTPase M) gene and this risk allele alters the complementary target 
sequence of miRNA-196 [78]. This reduces miRNA-196 binding to the 
IRGM mRNA increasing the stability of the IRGM mRNA and protein 
levels [78,108]. 

Tools such as RegRNA 2.0 and miRBase (the microRNA database) 
can predict how genetic variants impact miRNA target specificity 
[78,109].

Genetic variants and long non-coding RNAs (lncRNAs)

 lncRNAs are non-protein-coding transcripts which could be longer 
than 200 nucleotides in length. lncRNAs are found across intergenic 
regions of the human genome [23]. They can interact with chromatin 

regulators for their recruitment by chromatin [110,111], a process, 
which relies on a highly conserved lncRNA tertiary structure. Though, 
lncRNA tertiary structures can be changed by genetic risk variants 
[112]. The 9q21.3 (coronary artery disease) and 22q12.1 (myocardial 
infarction) risk loci have SNPs associated with the ANRIL and MIAT 
(myocardial infarction associated transcript) lncRNAs, respectively 
[113,114]. The risk SNP rs35955962 is located in the MIAT lncRNA, 
that increases its affinity for nuclear proteins [114]. 

The fundamental question about the effective distance between 
influential regulatory elements and target genes has not yet been 
answered. However, regulatory elements (like enhancers) necessary for 
tissue-specific gene expression have been identified at megabase (1MB) 
distances from their target genes, and have been shown to physically 
interact with them [115,116]. 

Integrative functional post-GWAS methodologies
Bioinformatics tools/methodologies and integrative functional 

genomics that combine GWAS data, linkage disequilibrium, and 
whole-genome functional annotations can provide a means to identify 
the targets of risk-associated loci [17,27,70,71].  Such tools can be 
employed to predict the biological impact of genetic risk variants and 
identify putative causal genetic variant responsible for risk loci. 

Protein deleteriousness predictions

Many computational tools have been developed to predict 
“deleteriousness” of SNPs and indels [117,118]. These methods 
generally take features like biochemical property of the altered 
amino acid, conservation and sequence homology as input, and use 
machine-learning technique to train a classifier. The most extreme 
case of protein function interruption is the loss of function mutation. 
However, genome-sequencing studies found that all human carry loss 
of function mutations without obvious phenotypic effect, and such 
common loss of function variants were depleted in polymorphisms 
associated with complex disease like Crohn’s disease and rheumatoid 
arthritis [119]. The results indicate that the “deleteriousness” feature 
should be interpreted with caution, since disruption of protein function 
does not necessarily have a phenotypic effect. In this regard, the 
“residual variance intolerance score” has been defined quantitatively 
measure the tolerance of a protein to mutations [120]. Numerous tools 
have been developed to predict the putative deleterious effects of non-
synonymous SNPs that cause an amino acid change in a translated 
protein including SIFT [110], PolyPhen-2 (Polymorphism Phenotyping 
v2) [111]. Tools like, PolyPhen and MuTIP predict changes in protein 
structure imposed by genetic risk variants mapping to coding regions 
[118,121]. 

DNA recognition motifs to modulate transcription factor 
binding

Motif-prediction tools, such as HaploReg, RegulomeDB, FunSeq, 
and SnpEff, identify genetic variants that significantly alter DNA 
recognition motifs to modulate transcription factor binding [122–125]. 
The intra-genomic replicates (IGR) method provides an alternative 
and can predict changes in chromatin-binding affinity of transcription 
factors caused by risk variants without the use of position-weighted 
matrices (PWM) [71]. 

DNase I hypersensitive sites

DNase I hypersensitive sites (DHSs) are markers of accessible 
chromatin, which indicate regulatory roles in the transcription process. 
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DHS have been mapped in 349 cell and tissue samples genome-wide 
by next-generation sequencing [126]. Enrichment analysis showed 
that trait-associated SNPs are more concentrated within DHS regions, 
excluding confounding factors such as allele frequency and distance 
from the nearest transcriptional start site [17].

DNA methylation

Epigenome data in disease states are valuable for understanding 
disease and prioritize disease susceptible loci. However, more efforts 
are needed in disease-specific epigenome mapping studies and the 
implementation of databases to make such data publicly available. For 
DNA methylation alone, one database exists, (DiseaseMeth), which has 
incorporated methylation data for 72 human diseases [127].

Gene expression

Studying the association between genetic variation and gene 
expression offers a straightforward way to begin the complicated task of 
connecting risk variants to their putative target genes. Networks created 
using gene expression data from patient samples can also model the 
underlying molecular machinery [128] and can be exploited to bridge 
GWAS results with an underlying disease mechanism, as exemplified 
in the autism spectrum disorder [129].  Chen R [130] analysed 476 
expression datasets available from Gene Expression Omnibus (GEO), 
and calculated the frequency that a gene was differentially expressed in 
these datasets, which they called “differential expression ratio.” They 
found that differential expression ratio is positively correlated with the 
likelihood that a gene harbours disease-associated variants, where the 
list of disease-associated genes was created by combining information 
from the Genetic Association Database (GAD; [131] and Human 
Gene Mutation Database (HGMD; [132]). In addition, they found that 
among the genes discovered in the initial scan of the WTCCC type 1 
diabetes mellitus GWAS dataset, the differential expression ratio was 
higher in genes that were replicable than those not replicable in follow-
up studies. These authors have developed an online server, FitSNPs, to 
incorporate this feature (http://fitsnps.stanford.edu/index.php).

The Encyclopedia of DNA elements

There are many more genomic features collected and annotated in 
large community projects, such as the Encyclopedia of DNA Elements 
(ENCODE) [47], which are potentially valuable for SNP prioritization. 
Kindt [133] examined enrichment or depletion of trait-associated 
SNPs in 58 genomic features. The features investigated covered genic 
and regulatory features, conservation features, and chromatin state 
features [133]. Among those features, genomic regions annotated as 
“heterochromatin” and “low expression signals” are depleted of trait-
associated SNPs, while eQTLs and “strong enhancer” showed the 
highest level of enrichment [70].

Genetic risk variants’ analyses 
Expression quantitative trait loci

Genetic variation associated with gene expression, known as 
expression quantitative trait loci (eQTL), can identify the target genes 
of risk loci [6–9,134]. Polymorphism situated in DNA regulatory 
elements can alter the gene transcript frequency. Thus, as a quantitative 
trait locus, gene transcript frequency can be determined with substantial 
power [135,136]. Brem et al. [137] published the first genome-wide 
study of gene expression in 2002. eQTLs that link locally to adjacent 
genes, are denoted as cis-eQTLs. Whereas, those that are connected 
to genes at a distance either on the same or different non-homologous 

chromosome, are denoted as trans-eQTLs [138]. In most studies, ‘cis’ 
(local) has often been defined as being within 1 Mb of the variant under 
consideration [139]. Typically, cis-eQTLs are more abundant near 
transcription start sites (TSS) and transcription end sites (TES), and 
may map with low frequency more than 20kb away from gene [140]. 
Sometimes, exonic SNPs can also act as cis-eQTLs [140]. Even though, 
some cis-eQTLs are identified as shared or common eQTLs in different 
tissue types, trans-eQTLs are mostly dynamic and tissue-dependent 
[141].  In humans, the effects of cis-eQTLs are usually stronger than 
those of trans-eQTLs [125,126].

An analysis of Lymphoblastic Cell Line (LCL) eQTLs has revealed 
that GWAS identified SNPs, strongly associated with Crohen’s disease 
and these variants have been demonstrated to impact on PTGER4 
(prostaglandin receptor 4) expression; a gene located around 270 kb 
away from the variant region [142]. 

In recent years, a number of eQTL studies have been executed, to 
explore the effects of cis and trans-acting variants in human tissues 
of liver [143], adipose fat [144,145] and brain [146]. The Genotype-
Tissue expression (GTex) project (http://gtexportal.org), proposed and 
initiated by National Institutes of Health (NIH) (http://www.nih.gov/), 
promises to make available eQTL information derived from 30 sets of 
1000 samples each, representing 30 different tissues for disease genetics 
[147].

Online tools such as SCAN and the eQTL browser are publicly 
available to query eQTL data [12,134] and several reviews regarding 
the application of eQTL studies are available [148,149]. VarySysDB is 
a public eQTL database that covers around 36,000 loci holding 190,000 
annotated mRNA transcripts. Besides SNPs, VarySysDB also includes 
indel (deletion/insertion) variants from dbSNP, copy number variants 
(CNVs) from Genomic Variants Database, short tandem repeats and 
single amino acid repeats from H-InvDB and linkage disequilibrium 
regions from D-HaploDB [150].

eQTL analysis can also complement pathway-based association 
approaches that apply prior biological knowledge of genes and pathways 
to the interpretation of GWAS data [151–155]. Pathway-based tools, 
such as ‘Gene Relationships Among Implicated Loci’ (GRAIL), can 
also identify candidate target genes by identifying genes that are part 
of a pathway(s) that is enriched within multiple risk-associated loci 
identified for the same disease [156]. However, pathways are constantly 
evolving and adapting in parallel with our knowledge of them.

Variant set enrichment (VSE) analysis

The variant set enrichment (VSE) approach is among a set of 
first-generation integrative tools that have been developed [71]. It is a 
permutation-based method that compares the enrichment of genetic 
risk variant sets within any functional genomic element to randomly 
generated matched genetic risk variant sets [71,157]. In essence, it is a 
statistical test that assays for non-randomness. Similar methodologies 
have associated genetic risk variants from various diseases with specific 
chromatin states defined by WGEM [27] and regions of open chromatin 
[17,70]. However, Weng et al. [158] is suggested a SNP Set Enrichment 
Analysis (SSEA), based on ‘Adaptive rank truncated product method’, 
to assign at least one indicative SNP for each gene [158]. 

Gene set enrichment (GSE) analysis

In order to prioritize the set of genes mapped with selected SNPs, 
a Gene set Enrichment analysis could be implemented either on the 
bases of a gene relevant SNP count or functional scores associated with 
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SNPs or with their connotation with Gene Ontology (GO) biological 
process [159]. GSE analysis needs multiple data sources, like gene 
expression, association and linkage studies, literature search, and 
biological pathways for a list of genes. 

WebGestalt is gene prioritization methods, which visualizes and 
categorizes gene sets in multiple biological contexts, like chromosome 
distribution, GO tissue expression pattern, protein domain information, 
signaling and metabolic pathways and research literature [131]. Another 
method, Bayesian gene-set analysis (BGSA), is suggested by Shahbaba 
et al. [160], to evaluate the statistical significance of a specific pathway, 
based on the posterior distribution of its parallel hyper-parameter. It is 
a hierarchical Bayesian model, which combines data at the gene level 
by merging significance measures of SNPs linked with each gene, as 
well as at the pathway level by linking significance measures of genes 
relevant to each pathway [161]. 

Pathway enrichment analysis

Likewise, various methods are implemented to evaluate pathway-
based analyses for GWAS data, by taking gene set enrichment from 
transcriptomic studies into account [162-164], which have been 
extensively reviewed in the literature [151,155,158,165-172]. These 
methods could be used to test whether a group of genes in a biological 
pathway are jointly linked with a disease and different from selective 
statistics of genes and pathways. For instance, while using the GSEA 
framework, to evaluate the statistical significance for permutation and 
correction in multiple testing, Wang et al. allocated the highest statistic 
value as the statistic value of the gene, among all SNPs linked to a 
gene [155]. Another, related method, GSEA-SNP is recommended by 
Holden et al. [173], which computes all SNPs annotated to a pathway 
without evaluation of summary statistic at gene-level. While, Chen et 
al. [168] proposed another approach based on principal component, to 
identify ‘‘eigenSNPs’’ for each gene to measure their joint association 
of multiple SNPs. Segre et al. proposed another protocol named 
as MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT 
Associations), which can be used for both hypothesis testing and 
hypotheses generating analyses. By using GWAS results, it tests for 
genetic association enrichment in a group of functionally related genes 
or predefined biological processes [153]. 

ALIGATOR (Association LIst Go AnnoTatOR) method is suggested 
by Jones et al. [174]. It can be used to check for the overrepresentation 
of biological pathways, in lists of significant SNPs from GWA studies by 
using gene-ontology terms as index [169]. Likewise, Zhang et al. [175] 
developed an analytical framework named as ICSNPathway (Identify 
candidate Causal SNPs and Pathways) [175], to generate hypothesis of 
SNP, gene and pathway(s) to reveal the disease mechanism. 

Co-expression network

Undirected and weighted gene networks that characterise the 
correlation among gene expression levels are known as co-expression 
networks. In a co-expression network, genes (or probes) are represented 
by vertices, which measure the expression levels of gene transcripts. 
While an edge, between two vertices, indicates statistically significant 
correlation, moreover it is weighted by the correlation coefficient value 
[176]. 

Co-expression network can be employed to identify the functional 
annotation of undefined genes. Integration of eQTL analysis with co-
expression network is such an application that is used successfully for 
this purpose. One key benefit of it is that without prior knowledge, 
regulatory insights can achieve [177].

Protein-protein interaction (PPI) network and interactome

Gene set enrichment analysis (GSEA) could be improved by 
performing on protein-protein interaction network data, which 
can provide a better way to evaluate GWAS data by measuring the 
combined effects of multiple markers/genes, while individually that 
may have very weak to moderate association effects [178]. In biological 
functions, like biochemical reactions, signal transduction systems, 
transcriptional regulation and cytoskeletal structures, binding affinity 
between proteins is very important; which, can be measured by different 
high- throughput experimental techniques, like affinity purification-
mass spectrometry and two-hybrid system [176]. 

New analytical approaches are well recognized, in which different 
data resources are integrated to get their maximum predicting power. 
Bakir-Gungor et al. proposed a procedure to select functionally 
significant KEGG pathways by identifying genes within these pathways, 
where these genes are short-listed through SNP analysis, by initiating 
with a list of SNPs associated with selective phenotype in GWAS [179]. 
dmGWAS 2.0, proposed by Jia et al. [178], is based on a Dense Module 
Searching (DMS) methodology. It can annotate relevant genes or sub-
network region for complex diseases, by mapping association signals 
from GWAS datasets into the human PPI network. Particularly for low 
p-value genes in GWAS data, this DMS method systematically explores 
the most relevant sub-networks [178]. 

Moreover, to reveal the most relevant sub-networks for the 
disease, Liu Y et al. [180] has suggested two discrete approaches and 
the integration of both approaches is used to discover well-known 
as well as novel disease relevant genes or biological pathways [180]. 
PANOGA (Pathway And Network-Oriented GWAS Analysis) is 
another method proposed by Bakir-Gungor et al. [181] The method 
sum-ups p-values of GWAS SNPs and aggregates the functional score 
of SNPs from predictions produced by the SPOT [181] and F-SNP (The 
Functional Single Nucleotide Polymorphism) web-servers [182]; the 
resulting score is labelled as ‘pw-values’ [179]. PANOGA identifies the 
SNP associated with the gene that shows the most important functional 
effect, from all known SNP/gene transcript designations [179].

Iyappan et al. proposed an integrative approach, which takes benefit 
of the renowned and well-accepted RDF technology to incorporate data 
from different resources. That approach can be used to complement 
major heterogeneous resources (like, omics and gene expression data, 
and literature), to generate hypotheses for causal disease mechanisms. 
This approach not only can help to tackle the ever-growing data; but 
also it can support to integrate new data resources without changing 
the overall frame- work [183]. 

Epistatic interactions

Systematically, there are three key categories of epistasis; functional, 
Compositional and Statistical [184]. Functional epistasis ascertains the 
molecular interactions that genetic elements have with each another 
[185]. Compositional epistasis reveals the blocking effect on one allele 
by another allele at a different locus [186]. Statistical epistasis expresses 
a quantitative way to detect how the genotype at one locus effects on 
the phenotype of another locus [187]; it measures deviation from the 
additive effects of two loci on the phenotype [184]. In the literature, for 
a pair of SNPs, there are two fundamental tests of epistasis. First one is 
the ‘two-locus interaction test’ and the other is ‘two-locus association 
test allowing for interaction’ [188].

Mao et al. [189] identified four types of epistasis effects of two 
candidate gene SNPs with linkage disequilibrium (LD) and Hardy-
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Weinberg disequilibrium (HWD), i.e. additive × additive, additive 
× dominance, dominance × additive, and dominance × dominance 
[190]. Zhang et al. proposed another algorithm, TEAM (Tree-based 
Epistasis Association Mapping), which is exhaustive (i.e. check all 
epistatic interaction). The TEAM algorithm uses the MST (minimum 
spanning tree) structure; and without perusing all individuals, it 
updates the contingency tables on incremental bases for epistatic tests. 
[191]. Emily et al. [192] proposed a statistic method, named as IndOR 
(independence-based odds ratio), based on the biologically functional 
epistasis. 

Piriyapongsa et al. presented iLOCi (Interacting Loci), a SNP 
interaction prioritization algorithm. iLOCi identifies marker 
dependencies discretely for case and control groups and ranked them 
by calculating the difference in marker dependencies for all possible 
pairs of case and control groups [193]. Arkin et al. [194] presented 
an algorithm named as EPIQ (EPIstasis detection for Quantitative 
GWAS) for the detection of epistasis in quantitative GWAS data. EPIQ 
discovers SNPs with epistatic effect, without exhaustively testing all 
pairs of SNPs [194]. 

Case Study: GWAS and Alzheimer’s disease
Over the past few years, in the field of Alzheimer’s disease like many 

other complex and genetically heterogeneous diseases; the application 
of GWA screening to reveal novel susceptibility genes has attained 
substantial momentum. Beyond the well-known APOE association, 
more than two-dozen novel susceptibility loci are identified by these 
GWA studies [195]. 

Familial and Sporadic Alzheimer’s disease

Alzheimer’s disease is the most common form of dementia and it 
is linked with ‘complex’ and multifactorial genetic characteristics. AD 
can be categorized into two major genetic etiologies, the familial AD 
form and the sporadic form. Familial AD typically exhibits an early 
age of onset (50-65 years) and follows a mendelian way of disease 

transmission; while sporadic AD shows no evident familial aggregation 
and typically it is associated with relatively late-onset age (beyond 65 
years). The familial form of AD is usually caused by rare and highly 
penetrant mutation in the genes of APP, PSEN1 and PSEN2. GWA 
studies have identified more than 200 mutations within these three 
genes [196,197]. These genes are linked with the dysfunctioning in 
amyloid-β peptide (Aβ) production, that is a key element of β-amyloid 
in senile plaques [198]. Indubitably numerous other potential disease-
causing genes still need to be discovered for familial AD, however this 
type of genetically determined AD accounts only for less than five 
percent of all AD cases [199,200]. 

More than 95% of all cases belong to the so-called sporadic form 
of AD. The genetics of sporadic AD is much less well established. 
Generally, it is believed that sporadic AD is likely to be determined by 
a number of common risk alleles with low-penetrance, across several 
distinct loci. Currently, these loci are rather imprecise. However, 
genes located on these loci affect several pathways, many of which 
are supposed to be linked with the production, accumulation and 
elimination (“clearance”) of Aβ. Moreover, there is rational evidence 
to suggest that collectively, these genes have a significant impact on 
disease susceptibility and age of onset [195,201].

APOE alleles and Alzheimer’s disease

In account of late-onset AD (LOAD), a number of candidate gene 
studies dedicatedly focused on those potential genes and proteins that 
play a specific role in Aβ production.

Linkage studies have identified apolipoprotein E (APOE), a gene 
located on chromosome 19q13, as a candidate gene with the epsilon 
allele showing strong association to the disease [202]. The APOE gene 
has three risk alleles (i.e. the ε2, ε3, and ε4). However, out of them, the 
ε4 allele has a 4-fold greater risk for late-onset AD than the ε3 allele 
[203].  In contrast, the ε2 allele is relatively less common and has some 
protective effect with longevity [204,205] (Figure 1). 

Figure 1. Schematic representation of the APOE SNPs and genotypes [206]: Two SNPs (rs429358 and rs7412) are in strong linkage disequilibrium and result in three APOE alleles 
(E2, E3 and E4). APOE ε4 is a major genetic risk factor for AD. The Apo-E2, -E3 and -E4 isoforms, which are encoded by the ε2, ε3 and ε4 alleles of the APOE gene, respectively, differ 
from each other at amino acid residues 112 and/or 158. Apo-E has two structural domains: the N-terminal domain, which contains the receptor-binding region (residues 136–150), and the 
C-terminal domain, which contains the lipid-binding region (residues 244–272); a hinge region joins the two domains. A meta-analysis demonstrated a significant association between the 
ε4 allele of APOE and AD.
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Hence, some extensive studies suggest that only the ε4 allele 
of APOE does not describe all of the genetic risk of this region of 
chromosome 19, for AD. There are two other potential gene candidates: 
the first one is TOMM40 (encoding translocase of outer mitochondrial 
membrane 40 homolog) [206-208] and the second one is EXOC3L2 
(exocyst complex component 3-like-2) [209]. These genes, located in 
close proximity to APOE on chromosome 19, have been proposed to 
also increase disease susceptibility. Involvement of these genes suggests 
that other biological mechanisms, like mitochondrial dysfunction may 
play a role in disease progression [210].

GWAS and other susceptibility loci for Alzheimer’s disease

Correspondingly, the largest GWA study for AD to date that 
included up to around 75,000 individuals, were performed with 
European ancestry subjects. These association studies identified BIN1, 
CR1, EPHA1, CD2AP, MS4A6A, CLU, ABCA7, PICALM, PTK2B, 
HLA-DRB5/HLA-DRB1, SLC24A4/RIN3, SORL1, MEF2C, INPP5D, 
ZCWPW1, NME8, FERMT2, CELF1, CD33, CASS4 and EPHA1 as 
susceptibility loci for AD [209,211-215]. Most of these genes congregate 
into three pathways: immune and inflammation response, endocytosis/
intracellular trafficking and lipid metabolism [216].

The SORL1 (Sortilin-Related Receptor, L (DLR Class) A Repeats 
Containing) gene had been established to regulate managing of APP 
in a candidate gene approach and intracellular trafficking [217,218]. 
CLU (Clusterin) is a lipoprotein that highly expressed in both the brain 
and the periphery [219]. Like APOE gene, it is also involved in lipid 
transport [220]. It is also hypothesized that CLU acts as an extracellular 
chaperone that regulates receptor-mediated Aβ clearance and Aβ-
aggregation by endocytosis [219].

BIN1 (Bridging Integrator 1) is a part of the Bin1/amphiphysin/
RVS167 (BAR) family that are associated with various cellular processes, 
including membrane trafficking, actin dynamics and clathrin-mediated 
endocytosis [221], which also influence Aβ production, APP processing 
and Aβ clearance from the brain. The PICALM (Phosphatidylinositol 
Binding Clathrin Assembly Protein) gene is associated with clathrin-
mediated endocytosis in translocation of adaptor protein complex 2 
and clathrin to sites of vesicle assembly [222]. 

The CD33 gene encodes a transmembrane protein of type-I that 
is linked to mediating cell-cell interactions and sialic acid-binding 
immunoglobulin-like lectins. In human brain, it is expressed in 
microglial cells; while increased expression of CD33 and CD33-
positive microglia are observed in AD brains relative to controls. 
Contrariwise, a protective minor allele of the CD33, SNP rs3865444, 
leads to reductions in both CD33 expression in microglial cells and 
number of insoluble Aβ42 in AD brain. Additionally, the level of 
CD33-immunoreactive microglia positively correlates with the level of 
both insoluble Aβ42 and the amyloid plaque in AD cases [223,224].

CR1 (Complement receptor type 1) is a cell-surface receptor and 
member of the complement system that is associated with clearance 
of immune-complexes including C3b and C4b. Hence, C3b can bind 
Aβ oligomers; and in this way CR1 may be potentially involved in Aβ 
clearance. CR1 may also play a role in neuroinflammatory processes 
relevant for AD [225]. During this process, the CLU gene may get 
involved as an inhibitor [226].

The MS4A4A/MS4A4E/MS4A6E (Membrane-Spanning 
4-Domains, Subfamily-A: Members 4A, 4E and 6E) locus maps to 
chromosome 11 and is a member of a group of 15 MS4A genes. As 
CD33, MS4A4A is also expressed on monocytes and myeloid cells, 

which suggests that it is involved in an immune-related function. 

EPHA1 (EPH Receptor A1) is a member of the protein-tyrosine 
kinase family and the ephrin receptor subfamily. Members of this 
family are cell surface receptors, which binds with ephrin ligands on 
contiguous cells to regulate synapse formation, axon guidance, cell 
adhesion, migration and plasticity. EPHA1 also regulates cell motility 
and morphology [227]. In humans, besides expression in intestinal 
epithelium and colon epithelium, EPHA1 can be detected also in 
monocytes [228] and CD4-positive T lymphocytes [229]. This may 
imply that the basis for the genetic association of EPHA1 and AD lies 
in its putative function in the immune system. 

CD2AP (CD2-Associated Protein) produces a scaffolding protein 
that binds to nephrin, actin and other proteins associated with 
cytoskeletal organization [230]. CD2AP is also involved in membrane 
trafficking and dynamic actin remodelling that occurs during receptor 
cytokinesis and endocytosis, whereas in the immune system, it is 
essential for synapse formation [231].

ABCA7 (ATP-Binding Cassette, Sub-Family A (ABC1), Member 
7) is a member of the ATP-binding cassette (ABC) transporter 
superfamily. ABC family members involve in transportation of several 
molecules across intra- and extra- cellular membranes, including 
amyloid precursor protein [232] that is involved in host defence 
by influencing the phagocytosis of apoptotic cells by macrophages 
[233]. In addition, ABCA7 interacts with APOA-I and plays a role in 
cholesterol efflux and apolipoprotein-mediated phospholipid uptake 
from cells [232]. An independent GWA study, performed in African 
Americans, also confirmed that the ABCA7 gene is a susceptibility 
locus for AD [234]. 

Ridge et al. projected the phenotypic variance in Alzheimer’s 
disease case-control status concentrating on the 11 known AD markers. 
By using the HapMap imputed ADGC dataset with 2,042,116 SNPs, 
they anticipated that common variants identified in GWAS genes 
for Alzheimer’s disease, only elucidate 33% of the total phenotypic 
variance; within that APOE alone explicate 6% and other well-known 9 
known high frequency SNPs 2%, whereas more than 25% of phenotypic 
variance are still need to be identified [216,235].

A rare mutation of TREM2 gene linked to Alzheimer’s disease

A whole genome sequencing study performed by Jonsson et 
al. based on 2261 Icelandic individuals, discovered a rare mutation 
of rs75932628-T (R47H) located on TREM2 (Triggering Receptor 
Expressed On Myeloid Cells 2) gene with a frequency of 0.63%. This 
rare mutation is identified as a new promising genetic risk marker 
associated with AD, with the odds ratio of 2.92. Afterwards, this rare 
variant was confirmed in a replication study with the cohorts from 
Germany, Norway, Spain, the Netherlands and the USA [236,237]. 
Alongside, the link between the R47H variant and LOAD confirmed 
by Guerreiro et al. with a meta-analysis of three independent imputed 
data sets of GWA studies (i.e. EADI, GERAD and ANM) [238]. 

Six additional variants Q33X, Y38C, T66M, D87D, R98W and 
H157Y were also identified as associated with affected cases, which 
might be linked to AD pathology. Out of those three variants Q33X, Y38C 
and T66M, in the homozygous state, had been already identified in relation 
with a frontotemporal dementia like syndrome [239]. The TREM2 gene is 
linked with inflammatory responses; it is also involved in immunological 
pathways in AD. Microglial cells interact with β-amyloid plaques and 
produce high levels of pro-inflammatory cytokines and reactive oxygen 
species, which may exhibit an alteration in morphology [240]. 
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TREM2 is the only gene to be recognized with an adequate risk 
effect in AD since the establishment of the ε4 allele of APOE for AD 
[236,239]. 

Conclusion
Even though, GWAS is very successful in revealing genetic loci 

associated with human diseases and traits, reconnoitring the disease 
associated genes and molecular mechanisms underlying the identified 
genetic variants is not a trivial task. As more than 80% of disease/trait-
associated SNPs are located in outside the coding regions, and only 12% 
are located in or close to protein-coding regions of genes, and within 
that even only <5% are non-synonymous SNPs. Thus mostly genetic 
variants have to link to the adjacent (such as 500 kb distant) genes, to 
nominate them as candidate genes. Consequently, the inference for the 
mechanistic connection between diseases and its susceptible genetic 
loci is more challenging than ever supposed.

Functional genomics studies can support to reveal the functional 
significances of variants on intermediate molecular traits like protein 
products, alternative splicing, and gene expression. Thus subsequently, 
approaches, like computational and bioinformatics predictions 
based on the variants location and its sequence properties, can assist 
to propose the candidate genes. However, the range of potential 
functional consequences of variants is much broader, and therefore, 
new methodology is required to predict alteration in gene function. 
Furthermore, generally algorithms can only estimate variant effects on 
single proteins; likewise machine-learning approaches, that are being 
used to assess the effect of deleterious SNPs, have limitations.

Substantial knowledge about candidate genes in disease context are 
required to reveal the functional consequences at the molecular level, 
such as expression data at RNA and protein levels with time and space 
dimensions (such as at what time, in which tissue and in which organ). 
Furthermore, gene regulatory networks consists of many components 
linked to each other by multiple positive and negative feedback 
interactions, thus a deterministic understanding of their context is hard 
to achieve owing to rapidly growing complexity. Therefore, specialized 
algorithms and computable modelling approaches are essential, for the 
modelling and simulation of genetic regulatory networks.
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