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Abstract
Animal models of disease have historically played a crucial role in the investigation and explanation of disease pathophysiology and identification of drug targets. 
Moreover, animal models also played important role in the assessment of new drugs in vivo. 

Diabetes mellitus is a group of metabolic ailments, which is characterized by high blood sugar levels for a longer period. To avoid complications of disease and related 
economic losses and untoward concerns, prevention and early therapy are therefore necessary. Because of the inadequate usefulness of the current therapies, new 
therapeutic agents are required to be developed. This paper briefly reviews the animal models of type 1 and type 2 diabetes mellitus, which include natural model of 
diabetes, models of diabetes induced by chemicals, genetic models of diabetes, physiological model, non-obese model, surgery induced model of diabetes mellitus. 
Our study found that animal models played an important role in the investigation of the pathophysiology of diabetes mellitus. Also, they helped in the understanding 
of drug targets and testing new drugs for the mentioned disease.
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Introduction
Diabetes mellitus is a chronic metabolic illness, it is characterized 

by a high blood sugar (hyperglycemia), which is caused by relative 
or absolute lack of insulin. Over passage of time, diabetes results in 
damage and dysfunction in multiple organ systems (Table 1). Vascular 
disease is a major cause of many of the sequelae of this disease. Both 
microvascular disease (retinopathy, nephropathy, neuropathy) that is 
specific to diabetes and macrovascular disease (coronary artery disease, 
peripheral vascular disease) that occurs with increased frequency in 
diabetes contribute to the high morbidity and mortality rates associated 
with this disease. Neuropathy also causes increased morbidity, 
particularly by virtue of its role in the pathogenesis of foot ulcers [1,2]. 
Diabetes mellitus has two common types, they are type 1 diabetes and 
type 2 diabetes. Type 1 diabetes is generally thought to be caused by an 
immune-associated, destruction of pancreatic β cells, which produces 
insulin [3,4]. Therefore, it is thought be an autoimmune disorder, and 
its most commonly occurring in children and younger adults [5]. The 
control of the illness through monitoring the blood glucose, and insulin 
administration from outside is hard and expensive, which result in 

higher or lesser level of blood glucose levels, which is associated with 
additional systemic disorders [6,7]. The problem in type 2 diabetes 
(T2D) is the insulin resistance and there is no adequate compensation 
by the beta cells, together insulin resistance and no compensation leads 
to a relative insulin deficiency [8]. Therefore, both kinds of endocrine 
disorders represent quite complex states with the involvement of 
different bodily systems. Therefore, it is required to carefully choose 
the animal models for diabetes research. Moreover, animal models 
play a pivotal role in the exploration of the pathophysiology of diabetes 
mellitus [9]. Insulin deficiency of type 1 diabetes can be attained 
in a variety of ways, these ranges from chemical damage to the beta 
cells to breeding animals (rodents) which develop autoimmune 
disease (diabetes) spontaneously. A number of animal models for 
understanding the pathophysiology and the resulting complications of 
type 2 diabetes mellitus have been developed [10].

Additionally, a number of animal models for type 2 diabetes 
mellitus have been developed which also has obesity. This reflects the 
linkage between obesity and diabetes, a condition similar to that of 
the human type i.e. connection between obesity and diabetes mellitus. 
These animal models have abnormality in one or more genes that 
are connected to obesity and insulin resistance, which leads to the 
development of hyperglycemia [11].

There are a number of factors that affect pathogenesis of diabetes 
mellitus and its complications; they include obesity, insulin resistance, 
hyperglycemia, hyperlipidemia [9]. The aim of this study is to review 
the animal models that are used in the experiments and research of 
diabetes mellitus (Figure 1).  

Microvascular disease 
Nephropathy
Neuropathy
Sensorimotor distal symmetric neuropathy
 Autonomic neuropathy
 Focal and multifocal neuropathies
Vascular
 Nonvascular (entrapment)
Macrovascular disease 
Coronary artery disease
Cerebrovascular disease
Peripheral vascular disease
Associated complications 
Foot ulcers
Infections

Table 1. Chronic complications of diabetes mellitus.
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The animal models used in the pharmacological experiments are 
classified as follows:

Natural models of diabetes mellitus

These models are based on the reality that they develop diabetes 
mellitus without using alloxan or streptozotocin and thus allowing for 
investigating the actions of antidiabetic phytoconstituents [12]. There 
are a number of genetic animal models of diabetes for instance Goto-
Kakizaki, which is model for type 2 diabetes mellitus. This model is 
developing spontaneously by selective breeding over many generations 
[13]. For producing animal model of type 1 diabetes mellitus, animals 
develop diabetes between 12 and 30 weeks of age, while in some models 
like BB rats, it take 3 months to develop diabetes mellitus type 1. An 
important property of these models is that they can be used to study 
complications of diabetes mellitus like atherosclerosis and test the 
effect of drugs [14,15].

Diabetes mellitus models triggered by chemicals

There are some chemicals, which can be used to induce diabetes. 
These chemicals are streptozotoicn and alloxan. These two diabetogenic 
chemicals accumulate in the beta cells of the pancrease. The help of 
glucose transporter 2 mediates this action. The methyl nitrsourea 
moiety of the streptozocin is responsible for its cytotoxic activity on 
the pancreatic beta cells. This moiety alkylates DNA of the mentioned 
cells, resulting in the fragmentation of DNA [15]. Some studies 
report that diabetes mellitus induced by strepotozocin can improve 
the cardiac recovery from ischemia repserfusion [16]. Additionally, 
it decreases the occurrence of cardiac arrhythmia [17,18]. On the 
contrary, there are some published studies, which are reporting that 
diabetes induced by streptozotocin, couldn’t decrease the infarct size, 
even it can’t prevent the occurrence of arrhythmia [19-23]. Also it leads 
to the enlargement of the infarct size. Alloxan is another diabetogenic 
chemical, it leads to the pathogensis of diabetes mellitus through two 
different actions. It inhibits the enzyme glucokinase, thus it inhibits 
glucose induced insulin secretion. Moreover, alloxan induces diabetes 
through the production of reactive oxygen speices and subsequent beta 
cells’ necrosis [15].

Genetic based models of diabetes
Zucker diabetic fatty rats

These rats are discovered in the year 1961. They have mutated 
leptin receptor, which leads to the hyperphagia, as a result the 
rats become obese by fourth weeks of age [24]. These rats also 
have hyperinsulinemia, hyperlipidemia, hypertension, as well as 
compromised glucose tolerance. The development of type 2 diabetes 
in male rats (after feeding with high-energy diet) is attributed to the 
homozygous mutation that occurs in the leptin receptor [25]. After 3 
weeks up to two months of age, the animals develop insulin resistance 
as well as glucose intolerance. Between 2 and 2.5 months of age they 
will be clearly developing diabetes. In this model the hyperplasia of the 
Islet of langarhans is contributing to the development of high blood 
insulin levels [26].

In obese rats, the level of cholesterol and trigeglycerides is 
higher than slim rats. These high levels of lipids and increased lipid 
metabolism causes lipotoxicity in the skeletal muscle as well as in the 
panceatic islet cells [27–29]. These products resulted from the lipid 
metabolism is attributed to the obesity complications, resistance 
to insulin, cardiovascular problems and diabetes. These metabolic 
products disrupts the cell funtions, eventually they cause programmed 
cell death i.e. apoptosis [26,29]. 

Transgenic and knock out models of diabetes mellitus

These animal models are produced either through transfer of  
gene from diabetic animal to normal animal (transgenic), or they 
are generated by removing the normal gene (knock out) required for 
making enzymes needed for glucose metabolism [30]. These animal 
models can be produced only in those labs where the sophisticated 
equipment and techniques are available.

Miscellaneous models of diabetes mellitus
Non-obese diabetic mouse model

This model was developed in 1974 in Osaka, Japan at Shinogi 
laboratories. In this model the animals develop insulitis at the age of 
third or fourth weeks. This period is called prediabetic time, the change 
occurs in this stage is the CD4+ and CD8+ lymphocytes infiltration into 
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Figure 1. Animal models of diabetes mellitus.
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the islet cells [31]. Additionally natural killer cells and B-lymphocytes 
also exist their [32]. 

While infiltrated the immune cells into the islets of langarhans, at 
the age of 4-6th weeks, they attract CD4+ and CD8+ subsets, which are 
essential for development of diabetes. The incidence of insulitis causes 
the beta cells to destroy. Diabetes usually appears after 90% of the 
pancrease insulin is lost at the age of 10-14 weeks, diabetes can develop 
even up to the 30 weeks of life [33]. 

After the appearance of diabetes, mice loses weight rapidly, thus 
they require treatment with insulin. The non-obese diabetic mice 
model is used to study type 1 diabetes mellitus. Moreover, in this model 
the animals develop spontaneous disease similar to human beings. This 
model served in the pathological understanding of diabetes, including 
the knowledge about auto antigens and biomarkers similar to human 
beings, which helped in developing antidiabetic medicines [34].

In the nonobese mice as well as in the human beings the genetic 
factor that renders susceptibility to type 1 diabetes mellitus is MHC 
(major histocompatibility complex), [35,36]. More than forty genetic 
loci are present which render non-obese mice as well as the humans 
susceptible to type 1 diabetes, including genes relevant to immune 
system and pancreatic beta cells function [37]. 

Dendritic cells, macrophages and neutrophils infiltrate the 
pancrease of the non-obese diabetic animals at the age of three weeks 
[38-40]. 

Several studies reported that MHC class-II proteins in non-obese 
mice and in the human beings are similar structurally, this confer both 
of them to be susceptible or resistant to disease [41].

This genetic similarity between human beings and non-obese 
diabetic mice has been used to understand the mechanisms of type 1 
diabetes mellitus [42].

It is mentionable, that there are some drugs, which were proved 
effective in mice in this model, but failed to be effective in human 
beings [43]. The limitations of this model include the time point of 
interventions, translating the therapeutics tested in non-obese diabetic 
mice, dosing translation from mice to animals [44]. Another limitation 
is that the mice should be kept away from microbial pathogens, 
otherwise this can result in negative association of the animals with 
diabetes mellitus [45].

Model of diabetes mellitus in animals with normal blood 
sugar

In this model, the normal animals can be used to test the effect 
of anti-diabetic drugs. In addition to other models, this is still used 
for pharmacological screening of the antidiabetic drugs. This model 
allows studying the action of drugs with antidiabetic effect in animals 
with intact pancreas [46]. Additionally, this model is also useful to 
understand the action of diabetogenic drugs. 

Physiologically induced diabetes mellitus model

In this model the blood sugar level of the animal is increased 
without any damage to the insulin producing gland i.e. pancrease. This 
method is also known as the tolerance testing of glucose. In this model 
the animals are fasted overnight. After one day the animals are given 
glucose (p.o. 1-2.5 g/kg), the blood sugar is monitored periodically. In 
this model the animals which can be used include the rabbits and/ or 
male rats [47]. 

Surgery induced diabetes mellitus model

In this model the pancreas gland is removed through the surgery. 
The animal species, on which this model is applied, include rats, dogs, 
monkeys and pigs. There are few number of researches employed this 
animal model to evaluate the actions of phytoconstituents [46,47,48].

Demerits of this model include, technical and sanitary 
environmental requirement for surgery, as well as the risk of animal 
infection, post-operative care etc. For achieving mild to moderate high 
blood sugar levels, it is required to remove > 80% of pancrease gland. 
In this regard, if a small portion of the remaining gland is removed it 
can lead to significant reduction in the blood levels of insulin [46,48].

Conclusion
Diabetes mellitus is a global burden. It can leads to economic 

and humanistic disasters worldwide. A number of animal models of 
diabetes are developed at the preclinical level. These models helped 
to explore the actions of phytoconstituents on the animal species. 
Additionally, animal models contributed a lot in the exploration of the 
pathophysiology of diabetes mellitus and its complications. Similarly, 
these animal models also played an important role in discovering new 
therapeutic agents for both types of diabetes mellitus. Despite these all 
achievements made in the field of diabetes mellitus, there are still some 
shortages and limitations with the existing models. Thus, it is required 
for the relevant scientists and researchers to discover more models of 
diabetes that can be useful in understanding the mechanisms of disease 
and exploration of new therapeutic agents accordingly. 
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