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Introduction
Neurodegenerative disorders are often classified as a “multifactorial 

syndrome” as they share similarities between many genetic, clinical, 
psychological as well as environmental factors [1,2]. They are highly 
debilitating clinical conditions that result in progressive neuronal 
degeneration.  Alzheimer Disease (AD) in particular is characterized 
by progressive neuronal dysfunction and regular decline in cognition 
and behavior.  The cause of AD is broadly classified into two categories: 
sporadic and familial. The most common form of familial mutations 
is due to three major genes namely APP, PSEN1 and PSEN2 [3-5]. 
However, the sporadic form of AD is a complex amalgamation of genetic 
polymorphisms, environment as well as social lifestyle [6-8]. Although 
it has been decades since the search for novel biomarkers commenced, 
there is still no proper diagnosis and treatment for AD [9-11]. Barrett 
and Hunter’s   team report that the lack of efficient treatment for AD 
could be primarily due to a sort of careless misdiagnosis of the disease 
by physicians [12,13]. Such errors could be an act of lack of attention 
in routine medical examinations.  The existing health care treatment 
for AD is symptomatic relief [14,15]. However, it is widely disputed 
that the altering neurodegenerative patterns actually commence much 
earlier than the actual clinical manifestation of the disease. Therefore, 
early detection would not only improve the diagnostic accuracy in the 
clinics but also aid clinicians to offer better and earlier treatment for 
cognitive and behavioral problems [16,17] as well as better quality of 
life and economic outcomes.

State-of-the-art brain imaging technologies provide high-resolution 
information of structural and functional alterations. Therefore, they 
offer unprecedented early diagnosis; they also provide the opportunity 
for regular monitoring of a progressive clinical condition such as AD. 
Furthermore, imaging techniques aid in tracing the transition between 
diagnostic states such as Mild Cognitive Impairment (MCI) and AD. 

Depending on brain complexity, imaging techniques reveal 
different dimensions of brain structure and function. They can be 
broadly classified into three groups namely [18,19]:

• Structural Neuroimaging 

• Functional Neuroimaging

• Molecular Neuroimaging

Structural neuroimaging
Magnetic Resonance Imaging (sMRI), Computed Tomography 

(CT) and Diffusion Tensor Imaging (DTI) are some of the prominent 
structural neuroimaging techniques. Structural MRI is widely used to 

examine the shape, size and structural alterations in the brain regions 
[20,21]. DTI is an advanced MR technique that helps in understanding 
structural connectivity between brain regions [22,23]. These techniques 
primarily help in observable indicators such as “tissue damage” or loss 
of brain regions as well as measurable indicators such as white or gray 
matter changes and morphological changes such as cortical thinning 
[24,25].  These indicators are collectively classified as neuroimaging 
biomarkers as they are quantitative tracers of the disease progression. 
Some important neuroimaging biomarkers are listed below:

Atrophy

Brain atrophy is one of the most prominent neuroimaging 
biomarker for AD.  Atrophy refers to the loss of nerves and tissue, 
which ultimately results in the shrinkage of the brain [26,27]. It 
has been previously estimated that whole brain atrophy affects 2% 
of AD patients while the rate of atrophy in normal ageing does not 
exceed beyond 0.7% per year [28].  According to Frisoni, et al., the 
earliest MRI based atrophic changes can be detected in entorhinal 
cortex, hippocampus and cingulate cortex resulting in early memory 
dysfunction [29,30].

Cortical thinning

Many histopathological studies have proposed that AD are often 
related to damage of specific cortical layers such as neocortex and 
entorhinal cortex [31,32]. The latest MRI techniques still are not capable 
of examining individual layers of the cortex. However, there are many 
semi-automated surface reconstruction tools such as FreeSurfer, 3D 
MPRAGE that aid in cortex examination [33-35].

Fractional anisotropy     

 DTI techniques tracts the water diffusion in various tissues which 
provide vital information. They help in measuring the structure of white 
matter as well as fiber connectivity within and across brain regions [36-
38]. Fractional anisotropy is a numerical measure of fiber integrity.  
This index is sensitive enough to detect the white matter degradation in 
aging and other neurodegenerative diseases [39-41] (Figure 1).
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Functional neuroimaging 

Functional neuroimaging techniques help in determining the 
severity of brain injury which reflects on the cognitive and behavioral 
changes amongst patients [42,43]. The most commonly used functional 
neuroimaging techniques include functional MRI, Positron Emission 
Tomography (PET), Single Photon Emission Computed Tomography 
(SPECT), Electroencephalography (EEG) and Transcranial Magnetic 
Simulation (TMS) [44,45] and MR Spectroscopy (MRS).

MRS is a widely used non-invasive imaging technique that helps in 
measuring the metabolites found in brain tissues. It also facilitates in 
measuring the chemical composition of tissues such as myo-inositol, 
choline, n-acetyl aspartate as well as choline.  The advanced MRS 
imaging techniques help in identifying patients much ahead of the 
clinical onset of AD [46,47].

Brain glucose metabolism

Recent advancements in functional imaging studies have 
contributed significantly to identification of patterns amongst patients, 
who are at the risk of developing AD [48,49]. The earliest PET imaging 
abased studies were used to detect altering glucose metabolic changes 
amongst patients who were at a genetic risk of developing AD [50-
52]. PET-based radioisotopes such as oxygen (015) aid in tracing 
changes in cerebral blood flow which are often caused due to increased 
neuronal activity [53-55]. Similarly, [18  F] fludeoxyglucose-positron 
emission tomography (FDG-PET) detects bilateral temporoparietal 
hypometabolism [56-58]. They have been widely used as a diagnostic 
differential biomarker discriminating between patients with AD 
dementia and vascular dementia [59,60]. Another radioisotope based 
biomarker that is widely used in diagnostic studies is C-labeled 
Pittsburgh Compound-B ([(11)C]PIB). The increased binding potential 
of PiB was found to be common amongst MCI patients whereas 
decreased FDG uptake was observed only with patients with AD, thus 
serving a crucial diagnostic biomarker [61,62] (Figure 2).

Perfusion

Imaging techniques such as SPECT and DTI enable early detection 

of hypoperfusion in the white matter and cortex [63,64]. Abnormal 
cerebral perfusion are clear indicators of diagnostic transition from 
MCI to AD [65,66]. Borroni and Chao et al., has demonstrated patterns 
of hypoperfusion in parietal, temporal and posterior cingulate cortex 
in all those patients who are progressing from MCI to AD [67,68]. 
Another study performed by Caroli et al., compared three diagnostic 
groups namely CN, MCI and AD. The outcome of this study reported 
that hippocampal hypoperfusion pattern was found across patients 
with amnestic MCI in transition to AD [69] (Figure 3).

Emerging combinatorial biomarkers for AD
Clinical neuroimaging biomarkers are useful resources for AD 

diagnosis. However, the characteristics of these imaging biomarkers are 
not yet adequate for diagnosis of patients at an individual level. This is 
largely due to the lack of longitudinal imaging data [70,71]. Combining 
known genetic biomarkers with imaging data could improve the 
prediction pattern across all patients [72-74]. Neuroimaging genetics is 
an emerging field in which quantitative phenotypic features from brain 
imaging are used as readout to inspect the role of genetic variation in 
brain function [75,76].

Large scale GWAS studies have contributed to the identification 
of many risk mutations associated with AD such as CLU, PICALM, 
BIN1, CR1 and so on [77-79]. These studies have created a substantial 
shift in the mundane AD detection through standard cognitive tests. Of 
all the above mentioned genes, CLU is the most significant gene used 
in combinatorial imaging analysis. The risk variant rs11136000 have 
been associated with reduction in hippocampal volume in patients with 
Late Onset Alzheimer Disease (LOAD) [80-82]. Apart from CLU, the 
risk variant rs541458 of PICALM was found to be associated with CSF 
Abeta 42 levels [83-85]. Similarly, large scale initiatives across the globe 
have already started investing in the direction of combining genetic 
and imaging derived biomarkers for better AD diagnosis (Table 1).  

Large scale initiatives on neuroimaging and genetics
Here, we summarize the various initiatives that are focusing on 

integrating multi-scale data such as imaging and genetics for efficient 
diagnosis and treatment.

ADNI

ADNI is considered as one of the biggest ongoing multicenter 
study for developing longitudinal clinical, imaging, genetic and 
neuropsychological biomarkers for early detection of AD. The initial 
phase (ADNI-1) study had the greatest enrollment of participants 
comprising of 400 early MCI subjects, 200 AD and 200 Controls. 
Owing to its success, the study was further extended into the next 

 

NIFT: Ventricular enlargement 

Figure 1. T13D MP-RAGE scan of structural neuroimaging. This figure illustrates the image 
scan of an AD patient with ventricular enlargement annotated using NIFT terminology.

  

NIFT: Glucose hypometabolism 

Figure 2. Functional Neuroimaging using FDG [18] PET. This figure represents an AD 
patient scan with excessive excessive glucose hypometabolism.

 

NIFT: Amyloid burden 

Figure 3. Molecular neuroimaging using [18F] AV 45 PET. This figure displays the amyloid 
burden in coronal, sagittal regions of AD patient.
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Study type Cohort Snps Imaging readouts Outcome
Voineskos, et al. [86] Philadelphia Neurodevelopmental cohort rs12148337 White matter fractional 

anisotropy
The mutation had a polygenic risk score with 
white matter FA in schizophrenic population

Louwersheimer, et al. [87] Amsterdam  Dementia Cohort rs2070045-G (SORL1) Hippocampal atrophy SORL1 SNP rs2070045-G allele was related 
to CSF-tau and hippocampal atrophy, 2 
endophenotype markers of AD, suggesting that 
SORL1 may be implicated in the downstream 
pathology in AD.

Benussi, et al. [88] Brescia Cohort Leu271LeufsX10 (PGRN) Multiple System Atrophy PGRN mutations were shown in familial FTLD, 
75% in Corticobasal syndrome

Morris, et al. [89] Cohort of 355 stroke survivors rs1799983, p.Asp298Glu Cerebral perfusion The presence of TT genotype increased risk of 
incident dementia compared with GG genotype; 
hazard ratio, 3.14 (95% confidence interval, 1.64-
5.99; p = 0.001). 

Schuur M, et al. [90] Dutch family based cohort rs1699102, rs3824968, 
rs2282649, rs1010159

Microbleeds The association of SORL1 with microbleeds 
suggests that the amyloid cascade is involved in 
the aetiology of microbleeds in populations with 
hypertension.

 Inkster, et al. [91] AD cohort rs10868366 Gray matter volume The greater effect size in AD patients also suggests 
that the GG genotype could be a risk factor for the 
expression of cognitive deficits in AD.

Lyall, et al. [92] Lothian Birth Cohort
rs10524523

Hippocampal volume

Assareh, et al. [93] Longitudinal Sydney Older Persons 
Study

rs4935774-T, rs2298813-G, 
rs1133174-G

Hippocampal atrophy The most common haplotype (H1), comprising 
rs4935774-T, rs2298813-G, and rs1133174-G 
alleles (T/G/G) was associated with whole brain 
atrophy in both males and females (p=0.012 & 
p=0.013; respectively). 

Oliveira-Filho, et al. [94] Boston Cohort
rs20417

White matter 
hyperintensity volume

 rs20417 polymorphism was associated with 
increased WMHv (P = .037),not cardioembolic 
stroke patients.

Table 1. Represents a sample of cohort-based studies done using combinations of biomarkers for early AD detection.

phase (ADNI-2) with additional 550 participants. This study aimed at 
developing a standardized protocol for data integration and collection 
for MRI, PET and CSF biomarkers in a global environment [95,96]. 
The outcome of this study produced interesting hypotheses which 
went beyond conventional understanding of the AD pathology.  One 
of the earlier studies demonstrated that image derived biomarkers 
such as “atrophy” and “hypometabolism” exhibited a pattern based on 
the disease progression and severity [97,98]. Many successive studies 
also demonstrated the importance of CSF biomarkers, PET based 
biomarkers as early indicators of pre-clinical AD [99-101]. Another 
sister initiative of ADNI is called ADNI Genetics Core, which provides 
the possibility for researchers to estimate the genetic alterations using 
imaging features for understanding disease progression over time 
[102-104].

The European Alzheimer’s disease Neuroimaging Initiative 
(E-ADNI)

The overall goal of the E-ADNI initiative was to apply the 
standardized protocol of collecting images, genetics, and clinical as 
well as psychological data by adapting the European Centers of the 
Alzheimer ’s disease Consortium (EADC). This initiative was propelled 
to encourage the academic EADC centers to adopt the ADNI protocol 
for enrolling participants [105,106].

The Italian Alzheimer’s Disease Neuroimaging Initiative 
(I-ADNI)

The I-ADNI initiative was launched in succession to US-ADNI 
study for validating the acquisition and processing protocol of 
structural MRI scans obtained from different clinics across Italy by 
following the procedure from the original ADNI study [107,108]. 

The Australian Imaging Biomarkers and Lifestyle Study of 
Aging (AIBL)

The AIBL (https://aibl.csiro.au/about/) initiative consists of 1,200 
Australian participants who were longitudinally assessed for over 
5 years. This study was launched in 2006 to identify biomarkers, 
cognitive assessments, genotype, biomarkers such as APOE, social and 
health factors for monitoring AD progression and early AD treatment. 
The AIBL initiative has given rise to lot of insights such as AD patients 
are prone to be more anemic than patients with MCI [109,110]. 
Participants enrolled in this initiative are continuously assessed every 
18 months for any clinical indication of the disease.

EPAD

EPAD (http://ep-ad.org/) stands for European Prevention of 
Alzheimer’s Dementia Consortium. It is a major European initiative 
for developing systematic and flexible approaches to clinical trials of 
drugs for preventing Alzheimer’s dementia. The adaptive trial design 
in EPAD promises a faster and low cost drug production in the market. 
The imaging protocol of EPAD is adapted from the AMYPAD initiative 
which brings together the academic and private research groups for 
PET based studies to explore amyloid-beta as a therapeutic marker for 
AD [111,112].

AMYPAD

AMYPAD (http://www.amypad.eu/) stands for Amyloid Imaging 
to Prevent AD. This project was initiated to investigate the beta-
amyloid biology through PET scans from pre-symptomatic population 
as a diagnostic and therapeutic biomarker for AD. The AMYPAD 
project is funded by the Innovative Medicine Initiative (IMI) program 
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and will run initially over 5 years. In the course of this project, patients 
susceptible to AD will be scanned for beta-amyloid through PET 
imaging. The initiative aims at improving the diagnostic standards 
for AD treatment and prevention (http://www.alzheimer-europe.org/
News/EU-projects/Thursday-17-December-2015-AMYPAD-project-
progresses-to-second-stage-of-applications-for-IMI2-Call-5).

PPMI

The Parkinson’s Progressive Markers Initiative (PPMI) (http://
www.ppmi-info.org/) is an observational longitudinal clinical study 
designed for examining patients with Parkinson’s Disease (PD), healthy 
controls and also participants who have higher chances of developing 
PD. This study comprises of 1000 participants examined regularly over 
8 years and the patients are enrolled in 33 clinical sites in the US, in 
Europe, and in Asia. The PPMI data resource comprises of clinical and 
behavioral assessments, imaging data and biospecimen such as CSF, 
DNA, RNA, plasma, urine and cell line samples. PPMI is funded by 
the Michael J Fox Foundation in collaboration with 18 biotech and 
pharmaceutical companies [113].

ENIGMA

ENIGMA (http://enigma.ini.usc.edu/) stands for Enhancing 
NeuroImaging Genetics Through Meta-Analysis.  This consortium is 
an effort towards bringing researchers from diverse domains such as 
imaging genomics, neurology and psychiatry together to understand 
brain structure and function through MRI, DTI, fMRI, genetic as 
well as patient data. This study has so far analyzed 12,826 subjects. 
The preliminary project of ENIGMA was to identify common genetic 
variants in hippocampal or intracranial volume using Genome Wide 
Association Studies (GWAS). ENIGMA2 was the next project to 
explore genetic variants associated with subcortical volumes and 
ENIGMA-DTI was designed to explore genetic variants associated with 
white matter microstructures. Apart from meta-analysis based studies, 
the consortia are also focusing on understanding, how psychiatric 
conditions such as schizophrenia, bipolar disorder, depression affect 
brain functionality [114,115].

NeuroImage

NeuroImage (http://www.neuroimage.nl/) is an International 
Multiscale Attention-Deficit/Hyperactivity Disorder (ADHD) 
Genetics Initiative (IMAGE) funded by the National Institute of Mental 
Health. The goal of the study is to gather and analyze endophenotypic, 
phenotypic and genetic information about ADHD. This study is 
based on a collection of 5,578 subjects from 8 European countries.  
In the course of this project, structural and functional MRI scans are 
performed on patients, along with neuropsychological assessments and 
GWAS analysis in order to detect functional abnormalities underlying 
ADHD [116,117].

Initiatives such as ADNI and PPMI have largely invested in 
systematically harvesting genetic and imaging data. Studies like ADNI 
and PPMI form the basis for the association of imaging readouts 
with genetic variation information and may facilitate the generation 
of hypotheses about mechanistic links between genes and imaging 
features.

Mining links between neuroimaging readouts and mo-
lecular processes from literature

High-throughput imaging technologies have been employed to 
understand the molecular mechanisms underlying clinical conditions. 

Such efforts have led to the identification of novel biomarkers for 
all disease domains, especially AD [118,119]. However, the rapid 
growth of the literature around these combinatorial studies has made 
it increasingly difficult to aggregate and mine the reported findings 
[120]. Obviously, new technologies enabling automated text processing 
(“text-mining”) may help to retrieve relevant documents and to extract 
relevant knowledge from text. 

Ontologies and terminologies
One of the most efficient ways to address the challenge of 

unstructured information mining is with the efficient usage of ontologies 
and controlled terminologies. Ontologies are formal representations of 
knowledge that can represent entire research domains. They are helpful 
when concepts need to be shared across research communities in an 
unambiguous fashion. This is very crucial as it enables different research 
groups to communicate with each other without misinterpretation 
of the biological context [121-123]. Ontologies do also facilitate the 
exchange of data and knowledge between machines; they are in fact 
readable by both, human experts and machines. When transformed 
into terminologies (dictionaries), they can readily be integrated into 
text-mining systems and are very useful for information extraction and 
knowledge representation. Furthermore, ontologies bear the potential 
to enable automated reasoning over knowledge representations 
[124,125].

Existing ontologies in the field of neuroimaging
Similar to other biological domains, the field of neuroimaging 

research has advanced semantically by generating various 
terminologies and ontologies in the past. Some of the more 
widely recognized neuroimaging ontologies are listed below: 

Quantitative Imaging Biomarker Ontology (QIBO)

QIBO ontology was developed to standardize quantitative imaging 
biomarkers for better therapeutic intervention. This ontology consists 
of 488 terms and they consist of classes such as imaging agent, imaging 
instrument or biological intervention. QIBO represents concepts 
across several fields, including imaging physics and biology [126].

Magnetic Resonance Imaging Ontology (MRIO)

This ontology captures all concepts needed to describe the outcome 
of MRI scans. It has been designed to overcome the heterogeneity in 
MRI readouts. The authors mainly capture measured data coming 
from T1, T2, tissue as well as other factors, such as temperature. The 
MRIO ontology focusses mainly on two MRI representations namely 
MRI simulators and DICOM images and conceptualize all possible 
terms that can be observed using these scanned images [127,128].

NeuroLog

The NeuroLog consortium was established in the year 2006 for 
sharing and reusing data and tools for neuroimaging studies. This 
software architecture aids in efficient integration of neuroimaging data 
and tools from various neuroimaging research centers. This consortium 
also takes charge of the autonomous data management from each 
center to maintain the confidentiality of the neuroimaging data.  
Furthermore, the usage of semantically annotated tools inbuilt in the 
system architecture provides better standardization of neuroimaging 
datasets and therefore offers better accessibility through the federated 
schema based ontology [129,130].
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NeuroImage Feature Terminology (NIFT) 

Although there are so many ontologies established in the area of 
neuro-imaging, there is still a lack of a terminology which facilitates a 
systematic representation and retrieval of measured indices with high 
relevance for neurodegenerative diseases. All the existing ontologies 
represent what the imaging scan capture, but they do not contain 
concepts that link imaging readouts to disease pathology. Motivated 
by the apparent need for such a terminology, we have developed 
NIFT, the “neuro-image feature terminology”. NIFT represents a wide 
spectrum of terms linked to radiological, neuropsychological as well 
as measured indices highly relevant to neurodegenerative diseases (e.g. 
AD and PD) [131]. The NIFT terminology comprises highly generic 
concepts describing common neuroimaging features, but at the same 
time it is very specific and represents disease-centric pathological 
measures used in imaging scans in the domain of Alzheimer ’s disease 
and Parkinsonism. NIFT can act as a potential resource to capture 
molecular as well as clinical readouts, which are crucial in bridging 
these two domains as well as retrieving relevant documents which can 
be further used in a multi-layered disease models. As such, NIFT is well 
suited to support the identification of novel mechanisms underlying 
the etiology of AD and PD.

Retrieval of relevant publications using the nift 
terminology

The main purpose for developing ontologies and terminologies 
is to retrieve relevant publications and automatically extract relevant 
information from the literature. To enable specific retrieval and 
information extraction in the imaging domain, we integrated the 
NIFT terminology into our in-house text-mining system SCAIView 
[132,133]. SCAIView was developed at Fraunhofer SCAI to enable 
biologists and clinical researchers to perform semantic search and 
information extraction from the scientific literature. A free version of 
this literature mining environment, SCAIView academia, allows free 
access to the semantically annotated PubMed abstracts. For PubMed 
Central (PMC) full text publications, SCAIView allows a full-text 
search as well. We have integrated NIFT in SCAIView and used the 
system to systematically retrieve relevant documents containing useful 
information on imaging readouts linked to molecular entities. The 
resulting literature corpus was then used for mechanistic modeling 
purposes.

Mechanistic modeling of neuroimaging indices
We wanted to understand the significance of a measured index 

obtained from imaging techniques and their association with clinical 
tests to improve the prediction an underlying neurodegenerative 
disease, in this case, AD. For this, we performed an optimized search 
query using our literature-mining environment SCAIView. 

We used the query “[Neuroimaging Feature]) AND [MeSH 
Disease: “Alzheimer Disease“]) AND [Alzheimer Ontology Node: 
“Evaluation“]) AND [BRCO]) AND [PTS]) AND [Organism: ”Homo 
sapiens“]” to retrieve relevant publications that comprises disease-
specific terms, brain region and cell-type information (BRCO) and that 
comprise pathway mentions (PTS). The Alzheimer Ontology (ADO) 
concept “evaluation” provides a wide spectrum of entities that describe 
various clinical tests that are significant for diagnosing AD. Once the 
articles were retrieved, we tried to model them in order to identify 
underlying the molecular mechanisms.

Mechanistic modeling of neuroimaging features with 
molecular pointers

One major motivation to develop the NIFT terminology was 
to support the generation of cause-and-effect models in the area of 
neurodegenerative diseases. With the integration of imaging features 
in cause-and-effect models, we hope to bridge between the molecular 
level (genome, pathways) and the macroscopic anatomical level of 
brain structures such as brain regions and the entire organ.

Using the query described above, we generated a literature corpus 
highly enriched for mentions of interesting imaging features together 
with interesting molecular processes. One of the resulting models that 
link imaging features to the molecular pathophysiology of AD deals 
with the influence of cerebral blood flow on cognitive impairment in 
AD. The overall workflow applied is shown in Figure 4.

NIFT application example
Hypothetical model for linking high-level cerebral blood flow 
with molecular processes:

The scientific community has long been interested in the vascular 
biology, in which the human physiology is represented as large and 
small blood vessels which might play a role in AD progression 
[134,135].  Although clinical studies conducted on AD patients reveal 
substantial evidences of vascular lesion being the biggest factor of AD, 
the fundamental understanding of the molecular mechanism behind 
that remains unexplained [136,137]. Therefore, here we establish our 
first hypothetical model that links high level complex biology such as 
cerebral blood flow with molecular processes.  This model is highly 
putative due to the lack of experimental validation and lack of clinical 
resources to support the hypothesis.

AD is highly diverse and complex in terms of the various 
cellular and molecular players that together result in the disease 
pathology. Apart from the molecular deposits such as plaques and 
tangles, increasing supporting evidences on the role of vascular 
abnormalities in AD pathology, so much so that these co-morbid 
conditions are classified under the term “vascular dementia” [138-140]. 
The links between vascular lesions and cognition impairment are based 
on observations that have been captured using advanced neuroimaging 
techniques such as SPECT [141,142].  By using radioisotopic tracers, 
depletion of blood flow can be traced by reduced glucose consumption 
in a particular brain region [143,144]. Apart from SPECT, MRI tensors 

Figure 4. Schematic representation of the workflow to extract links between imaging 
features and molecular mechanisms in a disease context.
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are constantly tuned to detect early neoplasms and altered blood flow 
detection with high-resolution quality [145,146].

Hypothetical mechanism for cerebral blood flow in AD

SIRT1 stands for “Silient Information Regulator 2 homolog 1”.  
In general, their role is to maintain cellular functions and promote 
longevity of the cells in humans as well as other model organisms 
[147,148]. Sirtuins have been reported to protect the brain from 
infarction by regulating the blood flow to all parts of the brain, 
especially the cerebral region [149-151].  In normal conditions, SIRT1 
has been reported to play a protective role by enhancing the non-
amyloidogenic cleavage of amyloid-beta protein (APP) through NF-
kb inhibition. The inhibition of NF-kb contributes to the clearance 
of amyloid plaques from the brain [152,153]. However, in case of 
AD, SIRT1 genes are reported to be under expressed which in turn 
activates the accumulation of amyloid beta in cerebral cortex through 
NF-Kb activation.  The accumulation of APP in the cerebral region 
could further lead to the depletion of nutrients such as oxygen from 
the blood, resulting in the inhibition of cerebral blood flow. Lack of 
oxygen and other nutrients to the brain, various mental and psychiatric 
abnormalities and could lead to cognitive impairment [154,155].

Also, we hypothesize that the overexpression of SIRT1 co-activates 
a regulator, which transcribes ADAM10 [156-158]. This could trigger 
ADAM10 to partially compete with the gamma-secretase for APP 
fragment resulting in the activation of Notch signaling pathway 
which is well-known for neuronal repair [159-161]. However, in case 
of AD ADAM mutant Q170H and R181G does not compete with 
alpha-secretase, therefore the beta-secretases accumulate in the brain 
resulting in impaired cerebral blood flow [162-164].

Another plausible mechanism of reduced cerebral blood flow is 
due to APOE activity. Increased expression of APOE also facilitates the 
molecular interaction between amyloid beta and Butyrylcholineesterase 
(BCHE) gene which results in the formation of a complex BCHE-Abeta-
APOE (BaβA) complex [165-167]. This complex alters the structure 
of BCHE which accelerates the catalytic activity of the enzyme. This 
results in the formation of amyloid plaques [168-170] as seen Figure 5. 
Increased expression of APOE also disrupts the neuronal activity in the 
hippocampus resulting in atrophy. Hippocampal atrophy is also one of 
the causative factor of cognitive decline in AD [171-173].

Apart from the well-known genes of AD, recently, PICALM gene 
has been emerging as a potential AD candidate. PICALM plays a 
crucial role in intracellular trafficking of endothelial proteins resulting 
in endocytosis. The protective allele of PICALM, rs3851179 facilitates 
the amyloid beta clearance through endocytosis [174-176]. LRP1 is 
another crucial protein whose major function is cholesterol transport 
and transcytosis of various molecules including amyloid beta across the 
BBB [177-179]. As PICALM plays a major role in the internalization 
of the endothelial proteins, it also internalizes the sLRP1 and amyloid-
beta complex by trafficking through two other proteins Rab5 and 
Rab11. These further results in amyloid transcytosis and clearance 
from entering the BBB [180-182]. Also, LRP1 activates another protein 
called GLUT1 which is another major glucose transporter across 
the BBB [183-185]. During normal conditions, there is a free flow of 
glucose and other nutrients across BBB. However, during AD, GLUT 
function is altered by Gly286Asp resulting in inhibition of glucose 
metabolism [186-188]. 

Here, we have demonstrated a hypothetical mechanism around 
cerebral blood flow in AD. We call this model as “putative” and 

“hypothetical” because they lack individual causal proof and substantial 
experimental validation. The overall workflow of the altered regulation 
of cerebral blood flow can be seen in Figure 5.  
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