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Abstract
Autophagy is a key pathway to clear cellular abnormal protein aggregates, and is essential for protein homeostasis and neuronal health. Several studies have shown 
autophagy deficits may occur in early stage of Alzheimer’s disease (AD). Regarding to Alzheimer’s disease, autophagy itself plays an important role in generation 
and metabolism of β-amyloid (Aβ), assembling of tau and thus its dysfunction may lead to the progress or aggravate of AD. By considering all published evidences, 
autophagy may be considered as a new target for developing AD targeted drugs. So far, a number of mammalian target of rapamycin (mTOR)-dependent and 
independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the 
role for autophagy deficits in AD, and the potential therapeutic effects of autophagy modulators in AD.
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lysosomal-associated membrane protein 2A, lys-hsc70: Lysosome-
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erythroid-2-related factor 2, PICALM: Phosphatidylinositol binding 
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Introduction
AD, which is the most prevalent and common neurodegenerative 

disease for elder people, is characterized by deficiency in memory and 
cognitive functions. The predominant pathological hallmarks of AD 
are the generation of Aβ plaques in specific brain areas, formation 
of neurofibrillary tangles in neurons axons and progressive loss of 
dendrite synapses and the eventually neuron apoptosis [1,2]. Although 
the etiology and molecular mechanisms underlying these pathological 
changes are not completely elucidated, recent studies have indicated 
deficiencies in autophagy-lysosome pathway, which is an important 
system to eliminate misfolded proteins or damaged organelles, are 
likely to precede the formation of Aβ plaques or neurofibrillary 
tangles [3]. Until now, three kinds of autophagy: macroautophagy, 
microautophagy, and chaperone-mediated autophagy (CMA), have 
been identified in mammalian cells. Among them, macroautophagy is 
get best studied and considered most relevant to AD, CMA has also 
been indicated by some reports to play a role in AD. To make it simple, 
hereon we will refer macroautophagy as “autophagy”. In the present 

review, we will begin with the autophagy physiological machinery, 
evidence of autophagy malfunction in AD, relationship between 
autophagy dysfunction and AD-related pathology, and finally focus on 
the therapeutic potential of autophagy modulators.

Materials and methods
We used “Alzheimer’s disease” and “autophagy” as keywords to 

search PubMed and review the related papers.

Autophagy machinery

Autophagy biogenesis includes multiple stages: phagophore 
membrane isolation, phagophore elongation and engulf of random 
cytoplasmic content, autophagosome maturation and fusion with 
lysosome [4]. Generally, the activation of autophagy is largely 
depended on cellular starving condition [5,6], such as low amino acids 
or glucose concentration. However, recent studies have also proven 
autophagy could be stimulated by diverse factors, such as reactive 
oxygen species (ROS) [7], hypoxia impairments [8], subcellular 
organelle damages [9] and protein aggregation [10]. However, in all its 
regulators, the mammalian target of rapamycin complex 1(mTORC1) 
has been studied most thoroughly and considered to play a key role in 
autophagy biogenesis. 

In amino acid depletion environment, mTORC1 complex is in rest 
situation and distributed freely in cytoplasm. At that stage, mTORC1 
complex cannot regulate autophagy initiation. However, in nutrition 
enrichment conditions, the lysosomal amino acid concentration will be 
largely increased, which will in turn activate v-ATPase on the lysosome 
membrane. v-ATPase is a lysosome membrane multimeric channel 
protein with a majorly function as ATPase and H+ channel, meanwhile, 
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it also functions as a sensor for lysosomal amino acid concentration. 
After sensing the increase of amino acid concentration, v-ATPase and 
its binding partner, Regulator, would both change their conformations 
and thus activate downstream signal molecule: RagA/B, by converting 
which conformation from GDP-bound to GTP-bound. Activated 
RagA/B will then recruit free mTORC1 onto lysosome membrane 
and facilitate another small GTPase, Rheb, to activate mTORC1 
on lysosome membrane [11-13]. After mTORC1 activation, it will 
negatively control autophagy genesis by blocking Unc-51-like kinase 
(ULK) 1/2 complex, which is an important inducer for autophagy by 
regulating Beclin1-VPS34 complex [14]. On the other hand, activated 
ULK1/2 could also activate microtubule-associated protein 1 light 
chain 3 beta (LC3B) by phosphatidylethanolamine (PE) modification 
[15]. LC3 is important for phagophore elongation and autophagosome 
formation [16]. Furthermore, activated mTORC1 could also inhibit 
autophagosome fusion with lysosome by phosphorylating UV 
radiation resistance-associated gene protein (UVRAG) [17] and thus 
keeping autophagosome out of lysosome and blocking its maturation. 
Therefore, activated mTORC1 could inhibit autophagy bio-genesis 
at all required stages, and inhibition of mTOR pathway by either 
pharmacological compounds such as rapamycin or activation of AMP-
activated protein kinase (AMPK) [18] could facilitate autophagy process. 

Autophagy in neuronal cells 

Autophagy is an essential pathway to maintain metabolism 
homeostatic in neurons [19]. Similar to other types of cells, with aging 
process, neuronal cell will also accumulate intracellular toxicant or 
damaged organelles such as mitochondria that must to be eliminated 
by autophagy to avoid potential cellular stress [20]. However, with 
its post-mitotic characters, neurons cannot dilute toxic substance by 
mitosis. So autophagy dependent protein/organelles clearance would 
be more important in neurons. 

Neurons are characterized by their highly polarized axons and 
dendritic compartments. Through the connections between elongated 
axons and multi-directional dendrites, neurons could make to 
communicate to another neuron with distances many times longer 
than their cell soma and thus connect to each other’s from long distance 
with minimized cell number [21]. 

Autophagosomes in neurons are majorly formed at axonal tips and 
gradually matured when they are retrograde transporting along axons 
to cell somas [19]. There is another evidence indicated autophagosome 
may form in the middle part of axon in order to clear damaged 
mitochondria [22]. Furthermore, some research also indicated 
autophagosome axonal distal biogenesis might correlate with synaptic 
function as well [23]. The first step of autophagosome biogenesis at 
axon tip is recruiting Atg13 and Atg5 to Double-FYVE Containing 
Protein 1 (DFCP-1). DFCP-1 is a Phosphatidylinositol 3-Phosphate 
(PI3P) enriched, omega-shaped ER structure that serves as a platform 
for autophagosome biogenesis [24]. Then within 4–6 minutes, lipidated 
LC3 will be incorporated into the developing of autophagosome [25]. 
Autophagy induction is more efficient in younger neurons [26], as 
the expression amount of autophagy induction related proteins such 
as beclin-1, Atg5 and Atg7 will decline with age [27,28], which may 
potentially contributing to the late onset of many neurodegenerative 
diseases [29] including AD.

Autophagy malfunction in AD

There is substantial evidence that dysregulation of autophagy is 
actually occurred in both AD animal models and AD patients. As early 

as 1967, Suzuki had found a large amount of abnormal aggregated tau 
protein and subcellular vesicles accumulated in the dystrophic or swollen 
neurites in AD patient brains [30], but the identity of these vesicles was 
unclear until 2005, when Nixon’s group found immature autophagic 
vacuoles (AVs) accumulated in dystrophic neuritis in AD brains by 
using immunogold labeling and electron microscopy [31]. This is the 
first direct evidence showed autophagy deficiency was involved in AD. 
In the same year, similar results from PS-1/APP double transgenic mice 
[32] also showed AVs would be accumulated in neuronal dendrites 
and soma even before Aβ plaques appeared compared to age-matched 
controls. In addition to these direct ultramicroscopic results, several 
autophagy-related proteins have also been found down-regulated in 
AD process. For example, Rubinsztein reported decreased expression 
of some lysosomal protease in the early phase of AD patients [33]. A 
recent study has found down regulation of some autophagy-related 
genes: atg1, atg8a, and atg18 in aged Drosophila melanogaster compare 
with younger controls. Furthermore, the same study also found reduced 
autophagy activity and hyper-generation of Aβ were both considered 
to correlate with late-onset neuronal dysfunction and AD phenotype 
[34], indicating that reduction of autophagy-related gene expression 
with age may contribute to late onset AD. 

Two types of AD has been identified to date: sporadic AD (SAD, 
also known as late-onset AD), and familial AD (FAD, also known as 
early-onset AD). Although little is known about the cause of late onset 
AD, it is widely accepted now that both genetic and environmental 
factors would contribute to this pathogenesis. Apolipoprotein E4 
(apoE4), a major genetic risk factor for SAD, has been found can 
cause autophagy malfunction. Results from ApoE4 transgenic mice 
showed ApoE4 overexpression could lead to Aβ42 hyper-generation in 
lysosome, which could finally lead to hippocampus neurons death [35]. 
In addition, ApoE4 could potentiate Aβ peptides induced lysosomal 
contains leakage and cell apoptosis in Neuro-2a cells [36]. Taken 
together, these studies indicated ApoE4 and Aβ may work in concert to 
increase the susceptibility of lysosomal membranes disruption, release 
of lysosomal enzymes, and hence neuronal degeneration [36]. 

Regarding to FAD, at least three genes, amyloid precursor protein 
(APP), presenilin-1 and -2(PS-1 and PS-2), have been identified as 
causative genes so far. FAD is caused by mutation in at least one of the 
three genes [37]. Research has found wildtype PS-1, but not mutation 
forms, is crucial for acidification of lysosome by regulating distribution 
of v-ATPase, and thus contributes to autophagy degradation in a 
gamma-secretase independent way [38]. Meanwhile, hyper-activation 
of Glycogen synthase kinase-3 (GSK-3), which is also a high-risk factor 
for AD, could interfere lysosome acidification via similar mechanism as 
PS-1 [39]. These investigations suggested that autophagy malfunction is 
involved in FAD, while the mechanism(s) is still not clear.

Proper formation and degradation of autophagosome is critical 
for normal autophagic flux. In healthy neurons, low basal autophagic 
activity was detected because of the quick subsequent degradation of 
autophagosome by lysosome. In hippocampus neurons of AD mice, 
abnormal accumulation of immature AVs in axon was observed before 
synaptic and neuronal loss [40]. However, as either autophagosome 
axonal trafficking deficiency or insufficient lysosome acidification could 
cause AVs accumulation in axon, the actual mechanisms underlying 
autophagy dysfunction in AD is still need further investigate. It is also 
a debate whether dysfunction of autophogy is the cause or result of AD. 
Reports to date usually show some controversies [41-43]. Many factors 
may lead to these differences, such as different animal models, cellular 
models, and experimental paradigms. Also, the different model systems 
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are likely represented of different particular stages of AD pathogenic 
process. 

Another autophagy form is CMA. CMA is distinct from 
macroautophagy as CMA degradation pathway will accurately degrade 
certain proteins without engulf process and most of its degradation 
target proteins would be cytoplasm soluble proteins. This selective 
degradation pathway also contributes to maintenance of cellular 
homeostasis particularly under stress conditions together with 
other types of autophagy [44-47]. In the process of CMA mediated 
degradation, targeted protein will first be recognized and bind by a 
cytosolic chaperone, heat shock cognate protein of 70KD (hsc 70). 
Most of hsc 70 targeting proteins share a reserved KFERQ sequence 
[48]. After binding with cytoplasmic hsc70, the target proteins will 
be unfold and delivered onto lysosome membrane. At lysosome 
membrane, lysosomal-associated membrane protein 2A (LAMP-2A) 
will form a transient multimeric channel to allow target proteins to 
translocate through lysosome membrane. Lysosome-resident form of 
hsc70 (lys-hsc70) in lysosome luminal side will also assist this process 
[49-52]. It has been considered that the number of lys-hsc70 positive 
lysosome would decide the speed of CMA mediated degradation under 
physiology condition.

Similar to macroautophagy, CMA is also considered to be related 
with neurodegeneration diseases such as AD and PD. It has been found 
CMA plays an important role in both Tau tangles formation and Aβ 
peptides generation and its activity is impaired in aged cells [53]. It 
has been found although Tau protein contains CMA recognizing motif 
in its sequence, trace amount of wild type Tau is indeed degraded 
by CMA. Generally, for totally degradation, Tau will be cleaved in 
cytoplasm firstly, and then the C-terminal part tanslocate into lysosome 
luminal for second and third cleavage [54]. Either autophagy or CMA 
process will both assist C-ter Tau get through lysosomal membrane. 
However, in certain Tau mutations, the first cleavage may happen in 
wrong amino acid position. After this cleavage, although remaining 
C-ter truncated Tau could still be recognized by hsc70 and recruited 
onto lysosome membrane, it cannot translocate into lysosome luminal 
efficiently, and thus resulting in accumulation of truncated Tau on 
lysosome membrane. Those undigested truncated Tau will then form 
oligomeric structures on the lysosomal membrane, gradually disrupt 
lysosomal membrane and finally cause leakage of lysosomal enzymes [53].

Another recent study has found APP also has KFERQ motif which 
could be recognized by hsc70. Deletion of this sequence will block APP 
degradation in lysosome and correspondently increase its secretase 
cleavage products. However, APP could still bind to hsc70 even without 
this KFERQ motif [55].

Autophagy dysfunction and AD-related pathology
To date, Aβ plaques and neurofibrillary tangles are still be 

considered as two major neuro-pathological changes in AD patient’s 
brain. Emerging evidence has demonstrated complicated interactions 
among autophagy, Aβ, and tau, which may contribute to the progress 
of AD.

Autophagy plays an important role in the metabolism of Aβ. First 
of all, autophagy is believed to be another major Aβ clearance pathway 
besides those well-known Aβ degradation enzymes [56]. Autophagy 
facilitates the degradation and clearance of APP [57] as well as all 
APP cleavage products including Aβ [47,58], and APP-CTFs (amyloid 
precursor protein cleaved C-terminal fragment) [59]. In microglia, 
Aβ has also been found to be degraded by autophagy through the 
autophagy receptor optineurin [60].

Secondly, autophagy-lysosome degradation system, which is 
considered important for Aβ degradation under multiple physiological 
conditions, has been demonstrated to be a novel way for Aβ production 
under pathological condition or in aging process [32]. Although Aβ is 
thought to be produced in endoplasmic reticulum, lysosome, and Golgi 
apparatus, emerging studies have provided evidence that Aβ generation 
may also happened in autophagic vacuoles [61]. Thus, accumulated 
immature autophagic vacuoles found in AD brains and in APP/PS1 
transgenic mice may present a novel source for Aβ generation [31]. 
Immunohistochemistry staining also showed Aβ42 were existed in AEL 
(autophagy-endosomal-lysosomal) vesicles in Drosophila neurons 
[62]. Another study applied on neuron showed that although APP 
and its processing enzyme BACE1 should be separated into distinct 
vesicles under normal condition, they showed strong co-localization 
and co-trafficking into autophagy-lssosome pathways under glycine/
NMDA-receptor agonist /K+ or GABAA antagonist Picrotoxin (PTX) 
stimulations [63]. This result indicated under some certain pathological 
conditions, the convergence of APP and BACE1 in autophagosomes 
may perform as novel place for Aβ generation. 

Third, autophagy is also involved in the secretion of Aβ. Recent 
findings support that autophagy may responsible for extracellular 
released Aβ. Measurement of extracellular Aβ in autophagy-deficient 
mice revealed that the Aβ secretion was reduced by 90%, while 
restoration of autophagy enhanced Aβ secretion to normal levels [64]. 
There is another recent work has also found in ATG7 knockdown mice, 
the secretion Aβ was largely reduced, which was accompanied by a 
significant intracellular Aβ accumulation [65]. 

On the other side, Aβ peptides could also regulate autophagy 
activity. Aβ40 in vascular could induce autophagy in endothelial cell 
and impair neurovascular regeneration [66]. Further study showed Aβ 
induced formation of AVs was regulated through the RAGE-calcium-
CaMKKβ-AMPK pathway [58]. 

When it comes to the case of tau, although ubiquitin-proteasome 
system (UPS) was still considered to be the major pathway for 
tau turnover, recent studies suggested autophagy may perform as 
another effective degradation route for Tau. A number of studies have 
demonstrated that dysfunction of autophagy-lysosome system leads to 
the formation of tau oligomers and insoluble aggregates, meanwhile 
activates autophagy could alleviate this aggregation [67,68]. Moreover, 
autophagy may affect Tau phosphorylation status. Hyperphosphorylated 
tau was found to be accumulated in brains of autophagy deficient 
mice [69], and this Hyperphosphorylated-tau accumulation will be 
largely reduced after autophagy was restored. Researchers have found 
autophagic degradation of tau is regulated by nuclear factor erythroid-
2-related factor 2 (Nrf2)-mediated activation of the autophagy receptor 
NDP52 [70]. Furthermore, Phosphatidylinositol binding clathrin 
assembly protein (PICALM, also known as CALM) could also regulate 
Tau degradation by modulating SNAREs (Soluble NSF Attachment 
protein Receptors) endosytosis, which is critical for tau autophagy 
clearance [71]. On the other hand, hyperphosphorylation of tau may 
result in autophagy dysfunction [72,73]. Tau is well-identified to 
facilitate the assembly and stabilization of microtubule, which is critical 
for autophagosome retrograde trafficking and maturation to fuse with 
lysosome. On contrast, hyperphosphorylated tau could lead to the 
instability and disassemble of microtubule cytoskeleton, which could 
subsequently inhibit autophagysome retrograde trafficking and thus 
accumulate immature autophagysomes in axons. 

Axonal transport is an essential process required to maintain 
neuronal homeostasis. Impaired axonal transport can lead to axon 
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degeneration and has been found in many neurodegenerative diseases 
including AD. In mammalian cells, newly formed autophagosomes 
move along with microtubule tracks [74] and during this process, 
autophagosomes engulf long-lived protein, misfolded protein or 
damaged organelles such as mitochondria, subsequently degrade them 
after fused with lysosome. Deficits in axonal transport usually result in 
accumulation of large amounts of autophagosome. Axonal dystrophic 
neurites arising from neurofibrillary tangles could be easily detected in 
hippocampus CA3 and CA1regions [75].

Years of pathological examination in AD brains have yielded 
many descriptions of abnormal axonal transport in both early and 
late phase of AD [76]. Meanwhile, the phosphorylated tau level affects 
axonal transport and degradation [77]. These data supported that 
abnormal protein aggregates disrupt axons, thereby autophagosomes 
couldn’t transport to cytoplasm and thus failed to fuse with lysosomes. 
In contrast to this, some other studies gave opposite viewpoints that 
lysosomal protease abnormalities are the causative factor of axonal 
degeneration [78]. However, the mechanism(s) underlying this 
transport disruption isn’t clear.

Concluding remarks and future perspectives
Although the etiology of AD remains unclear, and many factors 

including genetic mutation, environmental factors, imbalance of 
energy metabolism and heavy metal ion [79,80] seem to contribute 
to the etiology of AD, emerging advances regarding to autophagy 
have indicated its role as a protective factor in the early phase of 
AD, but an evil player in the late phase. Autophagy can influence the 
generation, secretion and clearance of Aβ, and it will also influence the 
phosphorylation status and clearance of tau. Thus, chemical modulators 
of autophagy as well as gene therapy targeting autophagy related 
proteins offer great potential for the treatment of AD. A number of 
mTOR-dependent and independent autophagy modulators have been 
demonstrated to have positive effects in AD animal models and patients. 
However, a more throughout understanding of autophagy malfunction 
in AD, as well as brain pharmacokinetics of autophagy modulators will 
be critical for designing new experiments with appropriate drug doses 
in any future clinical trials for AD.
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