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Abstract
Most studies now indicate that mental representations are distributed, captured by non-linear neuronal dynamics that occur over widely spaced brain domains 
grounding global and regional activity. In the distributed and highly complex interconnectivity that characterizes global and local influences, attractors emerge from 
a high dimensional state space, shaped by multiple forces that elicit their physical realization in oscillatory rhythms. Such oscillations are computationally fruitful, 
linking sensory cues to cognitive operation and initiating activity trains that structure organismal responsivity. Mechanisms regulating oscillatory transitions entail 
deterministic and stochastic elements that function complementarily to access pervasive features of cognition, including spike timing dependency and entropic 
maxima, and that are constrained by the physical features of weak coupling and sparse connectivity in the state space.  
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Introduction
Most studies now indicate that mental representations are 

distributed, captured by neuronal dynamics that occur over widely 
spaced brain areas and grounded in functional mechanisms that 
process information at both global and regional levels [1]. Global 
function emerges from the local dynamics of each area while global 
dynamics in turn constrain localized activity, inducing a reciprocal and 
reciprocating influence that is mediated via recurrent interaction and 
ordered to self-organization [2]. 

Drawing from this paradigm, how global activity elicits and 
constrains local dynamics is related to the distributed configuration that 
is globally mediated and that is effected through each of its local modes 
of interaction. A significant example is the slaving principle where 
micronodes, or patterns of activity, become enslaved to the dominant 
and distributed state [3]. In such interaction the critical dimension is 
the mutual interactivity that is elicited from within the local dynamics. 
Increasingly, it is apparent that their mutual dependence is expressed 
through a dynamical non-linear architecture; hence, the form of 
the dependence explicitly arises from features that characterize the 
architecture of the dynamical model [4-6]. 

Fundamentally, dynamical models of cognition must account 
for organismal needs by linking constitutive operational features 
to properties of stability, flexibility, and integrity that are required 
for global performance. Models incorporating non-linear dynamics 
capture these properties theoretically. Stability, for example, is a 
constitutive feature of attractors, invariant mathematical solutions of 
dynamical systems to which the state of the neural system converges, 
or to which it returns when perturbed [7]. Attractors thus emerge 
from the dynamics as points at which converging and diverging 
forces resolve, and from which departures are resisted. In the presence 
of pervasive noise attractors retain stability, but are nonetheless 
susceptible to shifts to new attractor positions. Such departures, 
however, can exceed converging forces, leading to qualitatively new 
solutions that non-linearly and abruptly differ from the original one. 
Because the corresponding neural phenomena are physical situated, 

with its requisite spatiotemporal limitations, attractor solutions are not 
always achieved, but instead constitute unattained points at the end of 
a trajectory toward which the attractor is heading. Recently proposed 
computational models based on brain dynamics, accordingly, 
accommodate these transient states, where intermediate stages also 
yield functionally relevant computations [8-10]. 

In the distributed and highly complex interconnectivity that 
characterizes global and local influences, attractors thus emerge from 
a high dimensional state space, where multiple forces shape their 
trajectory. While the chief factors arise in and through neural effects, 
these are also modulated by numerous physical factors, like anatomical 
configuration or impedance resonance, which significantly increase the 
dimensions of the state space [11]. Linking the theoretical conception of 
the dynamic event to the physical reality that attractors are intended to 
model, therefore, is not directly possible [8]; hence, a signature feature 
having the requisite properties of stability and convergence in the face 
of extrinsic perturbations is needed; that is, a feature that behaves as a 
function of state. Of these, the phasic behavior of neural ensembles is 
the best known and most frequently invoked [11].

Such rhythmic neural activities, generally considered synonymous 
with oscillations, lend themselves naturally to dynamically stable 
behavior since rhythmic cycles converge to relatively invariant patterns 
that can respond to, yet also resist, perturbation. Phasic behavior is a 
natural outcome of oscillator activity since phase changes describe 
a cycle whose inner events undergo characteristic and repetitive 
appearance. Oscillatory activity, moreover, is intrinsically ordered to 
combinatorial variation, with its coincident phase adjustment to new 
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invariant states and the generation of new attractor solutions [12]. 
Because oscillating activity is scale independent it can physically realize 
attractor states by combining across inter-areal domains at global as 
well as local levels, facilitating communication, coordination, and 
regulation of distributed neural populations that are simultaneously 
engaged through functional and effective connectivities [13-15].

Oscillatory models for communication posit that synchronization 
enhances information transmission [12,16], that is, phase alignment 
tends to facilitate information transfer and behavioral outcome. For 
enhanced information transfer, therefore, there must be a relationship 
between oscillator pairs that is characterized by a relatively invariant 
phase alignment. Synchronization is central, for example, to such 
theories as Communication through Coherence and Binding by 
Synchrony that posit that phase consistency optimizes transmission 
[17]. Conversely, new forms of information transfer require the 
availability of new portals through which information may be diverted; 
this is to say that oscillators must be capable of desynchronization in 
order to access new combinatorial variation. Hence desynchronization 
is the physical realization of updating to new attractor states [8]. In 
principle, transference out of the high dimensional attractor basin 
occurs because the basin no longer constitutes a point of energy stability 
becoming, instead, increasingly unstable. With sufficient destabilization 
a critical point is attained that is discretized, a bifurcation, where a 
new suite of forces balances the attractor configuration; for oscillators 
destabilization is effected through decoherence. 

Accessing and directing new sources of information is a critical 
feature of global entrainment, which must flexibly respond to varying 
cues whether of sensory or cognitive origin [18]. Simmons and Barsalou 
[19], for example, site these cues to modality specific association 
areas that may combine sensory, motor, or emotion output that, in 
turn, impact global output. Regulating de-entrainment of oscillator 
combinations is thus crucial to the realization of behavioral variability. 
How this is achieved is, as yet uncertain, but is likely to entail basic 
physical properties of the neural architecture that have been availed 
for this purpose. 

Among factors likely to facilitate these processes, spike timing 
appears to be a critical, though nonetheless complex, one [11]. 
Oscillations enhance neuronal spike probability by defining, through 
repetitive cycles periods of higher excitability, where neurons are 
sensitive and more responsive to incoming trains, and periods of 
reduced sensitivity, where spike occurrence is less. By adjusting spike 
timing it is thus possible to enhance intrinsic tendencies toward 
synchrony where oscillators can properly align and their frequencies 
then resonate in unison, or, conversely, to weaken their association 
leading to decoherence. 

Spike discharges at the single neuron level, however, are also highly 
irregular, described by some measures as Poisson like, probabilistic 
distributions [20]. Synaptic inputs to cortical neurons measured in 
vivo, notably, are subject to wide stochastic fluctuation [21]. Tuning 
curves, in consequence and for example, are broadened, a feature likely 
to affect phase alignment and desynchronization [22]. Indeed, noise 
contributions have been shown to significantly alter phase resetting 
curves [23]. 

Prevailing mechanisms for regulating bifurcations thus are likely to 
include deterministic as well as stochastic elements, including pulsing 
volleys and random spiking that influence spike firing.   How these 
mechanisms are used for the 'good of the organism' that is, the manner 
by which oscillatory flexibility is mediated and its dependency on the 

physical background of the neural architecture, and how this enables 
organismal interactivity, will be the subject of this review. 

The state space: Weak coupling and sparse associations
The need to recombine, that is, to retain variability in oscillator 

associations, requires that synchronization be of only modest strength, 
a feature of the state space that constrains how pulsing and stochastic 
discharges influence oscillator separation. The Theory of Weakly 
Coupled Oscillators [24] that models synchronization captures this 
characteristic of modest coupling in the mathematical description given 
by the Adler equation. For oscillation to persist, weak thus means that 
interactions lead to phase adjustments without strong perturbations of 
the oscillatory generative mechanisms. The Adler equation, accordingly, 
includes terms for divergence, which are ascribed to detuning due 
to intrinsic frequency differences between oscillator pairs, and for 
merger, which is determined by the coupling constant and related to 
the sine function of the phase angle difference. Weak coupling, hence, 
necessarily includes the presence of both diverging and merging 
tendencies, the balance between these two opposing factors thereby 
determining the trajectory undertaken toward synchrony.

Due to the balance between these forces, constancy in the 
instantaneous phase relation between two oscillators, termed phase 
locking, is typically never fully achieved [12]; hence, phase precession 
between coupled oscillators necessarily precesses through all phase 
angles, with coupling strength continually changing throughout the 
phase precession cycle. Attractive pull is enhanced when phase tuning 
is more proximate and reduced when phases are widely separated. In 
consequence, the fraction of cycle time spent in phase proximity is 
greater than that when phases are widely separated, a circumstance that 
is increasingly asymmetric as phase locking values approach a value of 
1. Worded otherwise, phase precession is slowest when phase angles 
are proximate and fastest when they are distant.

Sparse networks
Underlying the mechanism of weak coupling described by the 

Adler equation is a fine structure that is made apparent in mass 
recordings like the EEG, and is exhibited as a temporal variability in 
rhythmic neural activity. Termed phase variance, it has been linked 
to the individual behavior of micro-oscillators [22] that are subject to 
random spike discharges. Such activity displays considerable 'noise' 
fluctuation that is related to intraneuronal temporal variation in spike 
production [23], seen in single neuron current injections, and to 
variability between groups of neurons that are linked within oscillation 
circuits. Temporal variation observed in a mass recording like the EEG 
is thus indicative of a large set of micro oscillators whose alignment is 
stochastically determined and whose phases are normally distributed 
about a phase mean. Complicating this conclusion, however, are 
observations of intermittency in phase alignment. Micro oscillators, 
in fact, are not simply normally distributed, but, rather, regularly 
display intermittent episodes of desynchronization, where they no 
longer align with the oscillating phase [22]. The probability of this 
desynchronization occurs in inverse relation to its duration, that is, 
short quick desynchronizations are regularly experienced by all set 
members at random intervals, whereas longer separations are rare. 
These observations suggest that at least one effect of noise fluctuation 
is the generation of a small, independent pocket of micro oscillators 
that can be desynchronized in preparation for new and novel oscillator 
combinations.

Unlike models for information transfer that are linked to phase 
locked states, that is, static and defined by a constancy in instantaneous 
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phase relations, the partial synchronization that characterizes weak 
coupling entails a frequency modulation that alternates during 
precession between relatively strongly and weakly coupled periods of 
each cycle. This means also that within the oscillation cycle there exist 
temporal zones where synchronization is more or less stable, hence, 
where information transfer is more likely or not to occur. Unlike 
the fully phase locked state, therefore, where information transfer 
is postulated to occur only when the instantaneous phase difference 
is zero, in the weakly coupled model information transfer is likely 
to be periodic, rather than continuous - that is, to repetitively occur 
within a portion of each cycle, rather than to occur throughout the 
period of phase locking - and to occur at less than perfect alignment 
with the phase of the population oscillator. Indeed, instantaneous 
frequency modulation appears to be critical to the regulation of phase 
relations and synchrony [15,25,26]. By extension, synchronization and 
coupling strength also undergo minima repetitively. In other words, 
within each cycle instabilities are enhanced, making the possibility for 
desynchronization and bifurcation to another oscillator more likely.

Spike timing influences, accordingly, are framed by the physical 
circumstances that arise from the weakly coupled state, where spike 
discharges must adjust to the cyclical reappearance of oscillation 
instabilities to be effective. On the other hand, the proportion of the 
cycle occupied by enhanced or weakened coupling can be manipulated 
by spiking events, which can be expected to modulate oscillator 
recombination. How can this occur? In the absence of coupling phase 
precession is a linear function throughout the oscillation cycle [12]. 
With coupling, however, preferred phase relations that are marked 
by increased residency time make their appearance. Accordingly, 
modulating coupling strength can enhance desynchronization when 
paired with phasic ranges that maximize instability. 

Deterministic influences on desynchronization
Phase resetting tools that employ spike discharges, for example, 

illustrate how the temporal distribution of oscillation peaks can be 
modified, either by delaying or advancing them. For instance, charge 
injection has been used to reset hypersynchronized oscillations that 
underlie epileptic volleys [27], leading to their desynchronization and 
relief from epileptic behavior.  Analogously, intrinsic spike trains are 
capable of resetting oscillator phases also. As these are non-random 
events, therefore, they constitute a deterministic mechanism capable of 
modifying coupling strength.

The extent of the phase change introduced by pulse trains is 
typically described by phase resetting curves that relate the phase reset 
angle to the phase precession angle. A stimulus arriving after 4/10 of 
the cycle [17], for example, will advance the oscillation phase, while 
one arriving shortly after the onset of the cycle, within 1/10 of the cycle, 
will retard it. The time dependency of the phase change is explained in 
the Wilson Cowan [28] model, which posits that reciprocal volleys of 
first excitatory and then inhibitory neurons fire to yield the oscillating 
rhythm. Resetting trains are interpreted in this model to generate a 
second burst of spiking activity when inhibition effects have sufficiently 
waned. When pulsing trains occur very early after the onset of the phase 
cycle, for instance additional excitatory activity postpones inhibitory effects, 
which then delay the appearance of the next prominent spiking phase. 

Such spike trains originate naturally from a variety of cognitive 
sources. Significantly, current studies now document a number of cue 
generated, event related potentials that could serve to initiate pulsing 
trains and influence oscillation phase. Among the most prominent 
of these is the steady state visual evoked potential (SSVEP) [29,30] 

that is elicited in response to visual stimuli. Remarkably the SSVEP is 
responsive not only to a single stimulus but also to trains of stimuli 
and even to complex imagery, thereby carrying specific, discriminable 
information content about the cue source. The SSVEP, as well as other 
event related potentials, are postulated to be stimulus synchronized 
responses, and so possess the necessary power to emerge as recorded 
events in the EEG [17], implicating the recruitment of oscillating 
activity from several sources that thereby enhance power sufficiently 
to then mediate the phase changes. Outgoing trains from the cued 
event, for example, appear to function in internal phase resetting in 
the hippocampus [31] and, importantly for organismal performance, 
global attentional mechanisms have been shown to control delta phase 
resetting also [17]. 

The weak coupling circumstances that define the state space 
embedding oscillator pairs are critical here for placing constraints 
on how trains promote dissociation, which is likely to be temporally 
defined by the periodic reappearance of coupling strength minima.  
Significantly, pulse trains do not uniformly alter single clocklike 
oscillators, but rather a distributed population of micro oscillators, 
which are individually advanced or retarded to greater or lesser 
degrees; hence, the resulting phase broadening promotes dissociation 
among microoscillators that fail to align with the main peak.

Weakening synchrony through temporally imposed phase changes 
has also been shown to influence network activity beyond that of 
the coupled pair. Through synchronization, for example, embedded 
oscillators stabilize larger networks [32]. Cross frequency coupling 
of theta and gamma oscillations, in particular, appears to be critical 
to the formation of cell assemblies activated during the gamma cycle 
[33] that are postulated to significantly increase information load. 
Desynchronization, on the other hand, can be expected to reverse 
network stabilization to modulate information distribution.

Such information distribution, moreover, can be spatially 
amplified by introducing distance dependent delays [34]. Since spiking 
discharges require finite intervals for signal travel, distance dependent 
delays analogously function like spike trains by broadly spreading 
phase timing influences. Antiphase states in coupled oscillators 
[35], incoherent states in all to all coupled oscillator groups, and 
disorganized states in two dimensional arrays [36] for example, are 
all consequences of spatial delays. A significant outcome of this form 
of desynchronization is the induction of wave states. These states are 
characterized by spreading activity zones known as activity packets 
that spread across a network [37], where wave speed is determined 
by cellular and synaptic properties that control the surge of activity. 
In sparsely coupled networks the introduction of such delays in only 
a small fraction of connections, for example, is sufficient to yield 
waves; hence, the emergence of the wave state is a likely outcome of 
desynchronization, functioning to generate new attractors and to 
structure novel and variable modes of communication across larger 
spatial distances.  

Stochastic influences on desynchronization
While pulse trains can deterministically link cue generated 

potentials to oscillator pairs, the pervasive presence of stochastic 
fluctuation that characterizes the field of neural activity and defines 
the background within which oscillations are embedded, is likely to be 
functionally significant as well. Indeed, evolutionary forces are unlikely 
to have disregarded its use without costly investment of material and 
energy reserves [38]. Spiking activities and raster plots reveal, for 
example,  that superimposed on a prominent, but evenly and randomly 



Larrivee D (2018) Directing oscillatory transitions: Roles for noise and pulsing in global brain regulation

J Syst Integr Neurosci, 2018        doi: 10.15761/JSIN.1000194  Volume 4(2): 4-5 

distributed activity background, is a much smaller rhythmic wave [39], 
which is attributed to noise induced synchrony emerging from spike 
timing dependencies. Effects on desynchronization and combinatorial 
variation, accordingly, are likely to reflect the multifaceted, physical 
properties that characterize the neural 'noise' of the high dimensional 
cognitive space. 

How might noise function in oscillator recombination? Crucially, 
stochastic processes exhibit system criticality [1], that is, state 
dependent, phase transitions that mark the appearance of qualitatively 
new forms of behavior. Local cortical circuits, for example, require a 
minimal connectivity level for coherent oscillations [40]. Below this 
critical level synchronous activity is not possible, but once a threshold is 
achieved oscillations appear, like the rhythmic pattern seen in the raster 
plots. The presence of these transitions means that the traversal of this 
critical junction generates a qualitatively different phase where random 
fluctuations give way to ordered behavior. In a complex system having 
many degrees of freedom this junction is dynamically and non-linearly 
determined; hence it can randomly appear at an indefinite number of 
points. In the case of spiking discharge, this means that the state space 
is informationally captured by  multivariate and multi elicited time 
courses of spike generation [38], that is, noise driven transitions among 
multiple and multistable attractors [1] that are physically realized in the 
spike generating patterns. Indeed large networks of sparsely coupled 
neurons occur throughout the brain, which, strikingly, are dynamically 
sensitive to small perturbations [41]. 

The element of criticality in chaotic behavior thus affords the 
significant prospect for exploring the full range of rhythmic variation 
contained within the state space [38]. In principle, therefore, oscillatory 
variation can influence desynchronization by exposing coupled pairs 
to a wide variety of input patterns. Its significance, accordingly, lies 
in its capacity to maximize information exposure, understood as a 
determination of the maximum Shannon entropy of the system; that is, 
the information content of the state system is a function of all possible 
spiking configurations. If needed, the neural system can draw from 
this content to respond differentially and behaviorally to ongoing 
environmental change. Hence, chaotic and stochastic outcomes are not 
irrelevant obstacles to mechanistic and deterministic events but serve 
a critical role in correctly assessing responsive behavior. Strikingly, 
comparable conclusions are drawn from machine learning processes 
that are designated unsupervised [42].

How behaviorally relevant information may be extracted from such 
information content is an uncertain, but not unresolved computational 
problem for neural systems. Similar problems are encountered in 
the case of memory retrieval, where there is a need to distinguish 
between information capacity and information resolution. Specifically, 
recognition of unique memory engrams entails a minimization of 
entropic variation; hence, the system state is required to evolve to a 
unique representation. In the context of oscillators, for example, 
discrete phase shifts under the influence of arbitrarily small phase 
fluctuations can evolve over time to a final state of synchrony [43]. 

Exploiting these background rhythms to modify entrained 
oscillatory activity plausibly entails, again, the spike dependency of 
phasic noise events. An important principle of spike dependency here 
is that of temporal correlation, better known as Hebb's rule, which 
is assisted and amplified by oscillations. Spike discharges that follow 
closely on another discharge, for instance, enhance their connectivities 
in that direction, a phenomenon that is mediated through their 
synapses. Conversely, connectivities that are sequentially reversed are 
weakened [11]. Oscillatory synchronies, for example, establish firing 

and phasic dependencies; hence, they strengthen coupling through 
directional persistence. Stochastic firing that may emerge through 
exploratory criticalities, on the other hand, is temporally independent. 
This is significant since weakly coupled oscillators traverse all phase 
angles and widely separated phase intervals are then more likely to be 
influenced by stochastic events, leading to correspondingly weaker 
coupling. Accordingly, probabilities for phasic spiking influence from 
sparse, noise induced rhythms are elevated when coupling strength is 
least, a circumstance repeated during each oscillation cycle that can 
facilitate oscillator transfer.

Summary and conclusion 
Organismal behavior entails holistic referencing and the availability 

of a spectrum of behavioral possibilities that can be autonomously 
enacted. Cognitive mechanisms underpinning these twin needs emerge 
from a high dimensional state space, with a multitude of degrees of 
freedom, assessing environmental variance and structuring often 
complex responses beneficial to survival. Built from the physical 
circumstances of an energetically efficient and complexly ordered 
neural architecture, these mechanisms evoke non-linear dynamical 
elements that are physically realized in the cyclical and repetitive spiking 
events of oscillatory activity. Subject to weak coupling constraints 
oscillator recombination is regulated by complementary deterministic 
and stochastic events that yield novel forms of information transfer 
enabling adaptive, reliable, and robust behavior for living systems. 
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