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Introduction
This paper describes the results of a small pilot level project that 

demonstrated the use of EEG (electroencephalography) to monitor 
cognitive performance. The project involved just a few volunteers 
but focuses upon the possible future development of the procedure 
to monitor cognitive improvement and fatigue of brain injured or 
cognitively impaired patients or other individuals who perform 
complex cognitive tasks over an extended period. We believe that the 
procedure described here may also have potential value in some forms 
of clinical research and assessment of the benefits of physical therapy. 
Our focus is entirely on the procedure; no hypotheses regarding 
cognitive neurophysiology are implied or tested. And all references are 
to widely accepted sources of particular experimental or mathematical 
steps of this procedure.

If one assumes that the brain strives (automatically or under 
volitional control) to achieve maximum efficiency in allocation of 
limited processing resources, then it is appropriate to exploit the theory 
of optimal resource allocation in monitoring aspects of brain function. 
As Rosen [1] emphasizes, optimality principles are widely applicable in 
the biological sciences. Section 1 of this paper reviews the key features 
of resource allocation theory and points out several ways in which it 
provides insight for the analysis of human cognitive performance. 
Section 2 demonstrates the value of this theoretical insight by applying 
it to EEG data.

Optimal brain resource allocation

A foundation concept in the study of optimal resource allocation is 
the comparison of the extra (or “marginal”) benefits of allocating more 
resources to some particular activity, versus the extra (or “marginal”) 
opportunity costs. The latter are assessed by considering the benefits that 
are sacrificed as the resources are taken from some alternative activity. 
This applies not only to explicit human decisions but is presumed to 
explain many biological processes as well.

For example, the famous economist, Milton Friedman [2] has 
emphasized the broader nature of economic theory by citing the 
growth of a tree limb as an example of optimal resource allocation. As 
a tree limb grows it expands the tree’s leaf area and its photosynthetic 
access to solar energy. But at some point, the extra energy obtained is 

exhausted by the extra energy required to grow and maintain the limb. 
It obviously would be a poor allocation of the tree’s resources to grow 
limbs beyond this point.

This point of view is applied here as two basic assumptions: The first 
is that the brain does attempt to optimally allocate limited resources 
among several concurrent activities. The manner in which the brain 
does this need not be specified. The second necessary assumption is 
that every possible beneficial brain activity adds less and less to the 
individual’s welfare as it is pursued more and more extensively. The 
incremental gains are smaller and smaller --- until they are simply not 
worth the effort. This is the universal “law of diminishing marginal 
utility”. It is, mathematically, an assumption that the first partial 
derivative of welfare or benefit with respect to the level of the activity is 
downward sloping. For present purposes one need not know the degree 
of slope, other than that it is negative [3].

Graphical depiction of the theory

Figure 1 illustrates a marginal benefit function (MB). The 
horizontal axis shows the level of performance of some activity. (Let 
us call it activity A.) The vertical axis shows the extra benefit associated 
with each value on the horizontal axis. Since it would be irrational to 
“pay” more for anything than the extra benefit of having it, the vertical 
axis also shows the amount of brain resources that would be allocated 
to (expended upon) the given activity. Thus, the downward slope of the 
marginal benefit function shows that it is “worth” less and less to the 
individual (in terms of resource expenditure) to move to each higher 
level of performance.

Also, two possible locations of the marginal benefit curve are shown 
in Figure 1, illustrating that if the given activity suddenly acquires a 
higher priority, the whole marginal benefit curve would shift upward. 
Such an upward shift in a marginal benefit curve is what we usually 
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mean by increased “motivation.” The activity has, for some reason, 
acquired greater significance to the individual, and any given level of 
performance is worth more resource expenditure than before.

Figure 2 shows a marginal cost function (MC) for activity A, which 
is just the marginal benefit sacrificed by pursuing that activity at the 
expense of other brain activities. Its upward slope reflects the downward 
slope of those other MB functions, since a higher level of performance 
of activity A would imply moving leftward along the horizontal axes 
of their marginal benefit functions. Figure 2 also shows the effect of 
those other activities becoming more significant to the individual: The 
marginal cost curve for activity A would shift upward, since every level 
of activity A would then entail a higher marginal opportunity cost than 
before. 

An example of applying the marginal cost-benefit analysis

An upward shift in a marginal cost curve is, we believe, the most 
useful way to abstractly characterize “cognitive fatigue.” As a brain 
devotes more and more resources to a primary cognitive task, other 
brain activities must be denied those resources. Over time, or as the 
situation becomes more stressful, the opportunity cost will increase. 
Postponed system maintenance tasks will begin to become more urgent. 
Simple examples are the need to rest, or stretch, or go to the bathroom. 
A vast number of other activities, connected with perception, memory 
updating, maintenance of affective tone, and physiological homeostasis 
may also be partly postponed in order to concentrate attentional 
and other resources on the primary task. But the growing urgency of 
attending to any or all of these postponed activities will eventually shift 
the marginal opportunity cost function for the primary task upward. 
Any given level of performance of activity A will cost more than before.

As Hockey [4], and others have described, the brain tries to 
reorganize the performance of a primary task in order to reduce 
its demand upon brain resources. A balance is achieved when each 
activity is pursued to the level that equates its marginal benefit with its 
marginal cost. This occurs at the intersection of the marginal benefit 
and marginal cost curves, as shown in Figure 3. 

A shift (upward or downward) in either function, MB or MC, will 
of course require a rebalancing. A shift of either curve in Figure 3 will 
move the intersection along the curve that has not shifted. Although this 
is geometrically obvious, it is the most important feature of the analysis. 
For it allows us to relate changes in the level of resource allocation to 
the task, and changes in performance, to shifts in the curves which may 
be mapped to such constructs as “motivation” and “cognitive fatigue.” 

In Figure 3 we have illustrated, for example, the effect of cognitive 
fatigue. As the growing urgency of other tasks shifts the MC curve 
upward from MC-1 to MC-2, the brain’s resources must be reallocated 

to keep marginal cost equal to marginal benefit. For activity A, this 
reallocation is shown by the movement of the intersection upward to the 
left along the MB curve. At first, this may seem counter-intuitive. The 
growing urgency of activity B, C, etc., leads, surprisingly, to an increase 
in resources expended on A. This result is easy to understand, however, 
if the movement is viewed in two steps: First, the urgency of other 
activities) shifts upward the whole marginal opportunity cost function 
for activity A. But assuming no change in the importance of activity A 
itself, relative to various levels of performance, it becomes necessary 
to expend even more resources to that activity. As, Hockey [4] and 
others have described, the brain tries to reorganize the performance 
of a primary task in order to reduce its demand upon brain resources. 

In some cases, this pattern of reallocation of resources may lead to 
catastrophe. As an example (one that is more physical than cognitive), 
picture a small boy in a play-ground, hanging by his hands from the 
crossbar of a jungle gym. As the child reaches the limit of his endurance, 
he will likely start to squirm, improve his grip, even grimace, as if that 
would help. What we see is an increase in energy devoted to the task. 
The metabolic cost of performing the activity has increased because 
tired muscles can no longer be starved of oxygen. Yet the prospect of 
falling increases the marginal value of hanging on, and hence justifies 
an even greater energy commitment. As this is a self-reinforcing 
(positive feedback) loop, the challenge worsens until the child gives up 
and drops to the ground. With regard to mental activities it seems that 
the final outcome of the pattern described above is best called “mental 
exhaustion” rather than merely “cognitive fatigue.”

Geometric clarification of terms

The marginal cost-benefit analysis shows that certain combinations 
of the variables represent points on the same continuum (along one of 
the curves) while other combinations reflect movement of a curve and 
its intersection with the other one.

Figure 1. Marginal benefit function (MB)
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Figure 2. Marginal cost function (MC)
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Figure 3. Intersection of the marginal benefit and marginal cost curves
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For example, “fatigue” would shift the marginal cost function 
upward as shown in Figure 3. Its intersection with the marginal benefit 
function would slide upward to the right, leading to a decrease in 
performance of the primary task at the same time that more resources 
are committed to the task. It is important to note that these are in 
opposite directions. This opposition would also be the result of a 
downward shift of the marginal cost curve. This would depict the result 
of skill development including development of automated responses to 
a challenge, which would increase performance and decrease resource 
use. For our purposes we shall label it “learning.”

Figure 3 shows that there is only one way in which performance 
and resource commitment to a task can change in the same direction. 
This can only happen if the marginal benefit curve shifts. For example, a 
downward shift would depict the task being regarded as less important; 
and the result would be a decrease in both performance and resource 
commitment. For convenience we shall label this “boredom,” – and 
a shift of the marginal benefit curve in the other direction (outward) 
seems appropriately labeled “motivation.” The latter would result in a 
greater commitment of resources and an increase in performance.

Summary of the logic

This marginal cost-marginal benefit analysis will provide a 
framework for interpreting the data described in the next section. 
There it will be explained that EEG recordings can be transformed to 
measure the intensity of brain resources committed to an experimental 
task. When combined with task performance data, there are only four 
possible outcomes, and these can be interpreted as follows: 

• If both resource commitment and performance are increasing, then 
the MB curve is shifting upward (increased motivation).

• If both resource commitment and performance of an activity 
are decreasing, the MB curve is shifting downward (decreased 
motivation or boredom).

• If performance of an activity increases while fewer resources are 
committed to it, then the MC curve is shifting downward (learning).

• If performance of an activity decreases while more resources are 
committed to it, then the MC curve is shifting upward (fatigue).

EEG demonstration

This section reports how topographic EEG recordings were 
transformed into energy density ERPs for the current project. It assumes 
some familiarity with EEG data collection, especially collection of 
Event-related-potentials (ERPs). Specific details as to the derivation of 
the energy density ERPs used in this paper and additional applications 
can be found in a “Primer” that is posted on the Research Gate” website 
as a working paper [5].

ERPs allow us to “average-out” brain activity not related to the 
task [6]. Then, with modern multi-channel ERPs it is a simple matter 
to calculate the level of scalp energy density reflected in each ERP [7]. 
Although most of the energy used in brain activity is dissipated in the 
form of heat, carried away in the brain blood flow [8], some part is 
dissipated as the energy that maintains the scalp electrical fields that are 
sensed by EEG. We assume therefore that the average energy density 
of an ERP is proportional to the extent of brain activation committed 
to the gating task. (This is similar to the assumed linkage between 
brain activation and uptake of radioactive tracers that underlies brain 
scanning techniques like PET). On this basis, we hypothesized that 
rising levels of scalp energy density would be seen in ERPs taken, 

say, every 15 minutes, as a subject repetitively performed a complex 
cognitive task (mental arithmetic in this case) -- especially as the 
subject reached the stage where performance rapidly deteriorated and 
the subject became too exhausted to continue. Before that stage, we 
also expected to see occasions of over-compensation, i.e., “learning,” or 
other states as summarized above in Section 1.

Method
Eleven subjects, college-educated, ages 20 through 35, all of 

them colleagues at NASA’s Ames Research Laboratory, volunteered 
to compete in performing a computer-generated mental arithmetic 
task, repetitively for as long as possible, while instrumented for EEG. 
Though unpaid and unrewarded, each volunteer was eager to “win” by 
excelling at both accuracy and endurance. Their scores were posted as 
they finished. 

The task consisted of calculating the algebraic sum of four one-digit 
numbers presented in the center of a computer screen. For example, 
6 - 2 + 9 - 3. The numbers were random generated but were filtered 
to prevent obvious sums (such as 1 - 1 - 2 + 2) and an “answer” was 
presented which was, at random, often incorrect (75%), but close. The 
subject was required to determine if the algebraic sum was higher 
than, equal to, or lower than the proposed “answer,” and indicate the 
decision by pressing one of three keys on a special hand-held keypad.  
Each response triggered presentation of a new problem after a five-
second delay. Response times and number of errors were recorded 
automatically but were not revealed to the subject until the end of the 
session.

A 21-channel EEG recording was made while the subject performed 
the task, using a Lexicor NRS-24 system (Boulder, CO) with 3200x 
analog gain, 0.5 Hz high-pass filter, 60 Hz notch filter, and maximum 
scalp impedance of 5000 ohms. The analog signal was digitized at 256 
samples per second. Scalp electrodes were applied according to the 
International Standard 10-20 pattern [9,10], using the Physometric, Inc. 
eNET electrode cap (Billercia, MA) and EEG-Sol electrode paste (part 
number 16-004, Meditrace Products Division of Graphic Controls, Inc., 
Buffalo, NY).

Each response by the subject generated a marker in the continuous 
EEG recording that was later used to identify 600 millisecond stimulus-
gated epochs. Those generated during each 15-minute period deemed 
to be artifact free by visual inspection were then averaged to produce 
ERPs. Depending upon the subject’s reaction time and the number of 
epochs that were rejected because of artifacts, the number of epochs 
generated during a 15-minute varied but was in no case less than 30.

Each 21-channel ERP was mathematically converted to a measure of 
average scalp energy density (averaged over the 600 msec post-stimulus 
period and over the 21 electrode sites). This procedure involved fitting 
a least-squares model equation, V=(a+bX+cY+eXY)^3, expanded as a 
polynomial, to the grid of 21 voltage values at each time data point, 
and then using the fitted equation to calculate the second partial spatial 
derivatives of the implied voltage surface in each coordinate direction. 
These are components of the Laplacian, which is proportional to scalp 
charge density [11,12]. Comparison of the fitted voltage surface with 
the original voltage values produced an R-square value of 0.95 or greater 
for every data point in each ERP. The product of the estimated charge 
density and the estimated voltage at each electrode site (and instant in 
the ERP) is then proportional to scalp energy density at that site, at that 
instant [13-15]. We assume that energy density, averaged over all scalp 
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electrodes and over the period of the ERP is, in turn, proportional to the 
brain activity devoted to the gating task (whether diffused or localized).

Results
Some subjects lasted longer than others. One quit after only 45 

minutes (long enough for 3 ERPs). Two lasted for 150 minutes (2.5 
hours: 10 ERPs). In each case it was the subject who decided to quit. 
All indicated they were too exhausted to continue. At this point most 
were visibly exhausted (sweaty, agitated, and anxious to get up and walk 
around).

Figures 4 and 5 illustrate how the MB-MC analysis can be used to 
track individual subjects’ trajectory through the four possible states: 
Learning, Motivation, Fatigue, and Boredom.

These figures pertain to one typical subject. Figure 4 shows the 
subject’s ERP energy density levels compared to a “performance index”. 
The performance index is simply the unweighted sum of the subject’s 
average reaction time and number of errors during the period of each 
ERP. Note that the higher the value of this index, the worse the subject’s 
performance; this is a leftward movement along the horizontal axis of 
figures like Figure 3.

The following table summarizes the logic behind the trajectory 
(Table 1). It is the same as the summary at the end of Part 1, except 
that it makes clear that Figure 4 & 5 are based on an index of “bad” 
performance (rt + errors), which is a leftward movement in figures like 
Figure 3.

Discussion
The subject whose state trajectory is shown in Figure 5 was highly 

typical. Similar to most of the 11 subjects, he started by mainly learning 
the task, building skill through practice. That is, his performance 
improved (falling rt + errors) while energy committed to the task also 
fell. Soon he further improved performance by committing added 
energy to the task, i.e., the improvement in performance through 
practice was followed by a further improvement in performance 
through higher motivation. But then he began to tire: the marginal 
opportunity cost of performing the task began to rise, as shown by a 
concurrent increase in (bad) performance (errors + rt) and a decrease in 
energy. However, as with most subjects, this early period of fatigue was 
soon followed by a revival of performance through an increased energy 

commitment (higher motivation) --- until finally he was overcome 
by uncompensated cognitive fatigue, which we have labeled mental 
exhaustion. Not all subjects followed this general trajectory, of course. 
Two started in the “Motivated” quadrant, moved almost immediately 
into the “Fatigue” quadrant, and quit. 

Although the statistical analysis of group averages revealed a 
“statistically significant” trend -- rising fatigue (i.e., rising energy 
accompanied by falling performance) -- what may be more important 
for further research is the possibility of quantifying individuals’ detailed 
state trajectories. Difference and similarities among subjects may be just 
as important as the general trend toward mental exhaustion (which, 
after all, is not a surprising trend). 

State trajectory analysis applied to individual subjects in a human 
performance experiment may prove to be a valuable diagnostic tool. 
It could be combined with the scheduled introduction of special 
experimental treatments. For example, stress factors such as increases 
in ambient noise levels or temperature could be introduced at certain 
points during the experiment. 

In addition to potential applications in physical medicine and 
rehabilitation, we expect applications in human factors engineering 
experiments. The trajectory analysis could be employed for instance, in 
the comparison of instrument panel layouts and data displays, mission 
profile designs, training procedures, and crew selection criteria [16-27].

Conclusions
The procedure described addresses a serious problem in the 

interpretation of human performance. It is notoriously difficult to 
determine whether someone’s poor performance is evidence of lack of 
motivation, or lack of resources (capacity to perform). This is a problem 
that plagues teachers and parents, coaches, and therapists. 

The procedure described herein may be used to derive on-line in 
real time measures of cognitive performance using inexpensive small 
bedside type monitors. In this way the use of expensive MRI, BOLD 

Figure 4. ERP energy density (ENR, solid line, left axis) and errors + rt (dashed line, right 
axis). Curves shown are polynomial regression lines fit to the data.  R-sq. = 0.921 for ENR;  
0.927 for errors + rt
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and PET facilities can be avoided. The analytical and discriminatory 
steps in interpreting ERP results are straight forward and can easily be 
implemented on any laptop computer. As such, it avoids the necessity of 
complex ERP component analysis.

By combing ERP energy density analysis with the marginal cost-
benefit analysis of brain resource allocation, it is possible to distinguish 
not only between fatigue and motivational changes, but also between 
these states and boredom and learning or skill development. We have 
demonstrated how this analysis can be used to produce a graphical 
display of a subject’s trajectory through a state-space consisting of those 
four states. 
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