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Abstract
Hyperbaric oxygen therapy (HBO2) is a useful, and often underutilized, treatment modality for a variety of conditions. Providing 100% oxygen at increased atmospheric 
pressures oxygenates ischemic tissues, decreases edema, lessens reperfusion injury, stimulates angiogenesis, promotes wound healing, and improves fibrosis of irradiated 
tissues. As a result, HBO2 may significantly improve patient outcomes in carbon monoxide poisoning, crush injury and impending compartment syndrome, bone and 
soft tissue necrosis secondary to delayed radiation injury, problem wounds, central retinal artery occlusion, and idiopathic sudden sensorineural hearing loss. Given the 
likelihood of initial patient presentation or necessity of expedient intervention, it is imperative for physicians and surgeons to be able to recognize such opportunities 
where HBO2 referral is appropriate. Timely referral is important for successful outcomes.
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Key Points
Doctors and other providers should be aware of the utility of 

hyperbaric oxygen therapy for the following conditions:

1.	 Carbon Monoxide Poisoning

2.	 Crush Injury and Skeletal Muscle Compartment Syndrome

3.	 Delayed effects of therapeutic radiation including osteoradionecrosis, 
radiation cystitis, enteritis, proctitis and skin wounds in irradiated 
fields.

4.	 Central Retinal Artery Occlusion

5.	 Sudden Sensorineural Hearing Loss

6.	 Problem wounds due to diabetes and vascular disease

Introduction
Hyperbaric oxygen therapy (HBO2) as defined by the Undersea 

& Hyperbaric Medical Society (UHMS), is “an intervention in which 
an individual breathes near 100% oxygen intermittently while inside a 
hyperbaric chamber that is pressurized to greater than sea level pressure 
(1 atmosphere absolute, or ATA)” [1] Patients are enclosed within a 
chamber that is pressurized up to three times normal atmospheric 
pressure. HBO2 is commonly known by health care providers for treating 
decompression sickness (“the bends”) in divers; however, there are a total 
of fourteen indications approved by the Undersea & Hyperbaric Medical 
Society (UHMS) and generally reimbursed by The Centers for Medicare 
& Medicaid Services (CMS) and other insurers in the USA.

These indications are:

1. Gas Embolism

2. Carbon Monoxide Poisoning

3. Clostridial Myositis and Myonecrosis (Gas Gangrene)

4. Crush Injury, Compartment Syndrome and Other Acute Traumatic 
Ischemia’s

5. Decompression Sickness

6. Arterial Insufficiencies including:

       a.Problem Wounds

       b.Central Retinal Artery Occlusion

7. Severe Anemia

8. Intracranial Abscess

9. Necrotizing Soft Tissue Infections

10. Osteomyelitis (Refractory)

11. Delayed Radiation Injury (Soft Tissue and Bony Necrosis)

12. Compromised Grafts and Flaps

13. Acute Thermal Injury

14. Idiopathic Sudden Sensorineural Hearing Loss

Physicians and surgeons encounter a broad spectrum of patients 
that may need referral for hyperbaric therapy, either as the primary 
treatment modality or as an adjunct to pharmacologic or surgical 
interventions. Out of the fourteen indications for HBO2, we have 
decided to focus on the following based on the likelihood of initial 
patient presentation or necessity of expedient intervention.

Additional information and resources may be found at the Undersea 
& Hyperbaric Medical Society:  https://www.uhms.org/

https://www.uhms.org/
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Carbon Monoxide Poisoning
Carbon Monoxide (CO) is a colorless, odorless gas that can be inhaled 

when an individual is exposed to combustion products in a poorly 
ventilated or enclosed area. CO poisoning is a clinical diagnosis, based 
upon the patient’s history and reported symptoms. Carboxyhemoglobin 
(COHb) may be used to confirm exposure, but the relatively short half-
life of COHb may result in normal COHb levels [2-4]. 

The cardiovascular and central nervous systems are the most 
susceptible following CO exposure, resulting in cardiac injury and 
often long-lasting neurological sequelae including motor weakness, 
peripheral neuropathies, hearing and vision changes, and Parkinsonian-
like syndromes [5-7]. Infants, children, pregnant women, elderly, and 
those with heart disease are particularly at risk for more serious illness. 

 CO induced injuries are due to hypoxic stress from COHb formation 
as well as systemic oxidative stress [8]. However, it is important to keep 
in mind that COHb levels are not correlated with symptomatology or 
very predictive of the development of central nervous system sequelae 
and long-term patient outcome [9-12]. Therefore, COHb should not be 
used alone to determine necessity of hyperbaric referral. 

Signs and symptoms may present long-after the initial exposure. 
Patients may complain of nonspecific symptoms, such as: headaches, 
dizziness, fatigue, and sleep disturbances. In addition, neurological 
symptoms including neuropsychological and affective symptoms may 
arise. This symptomatology can present weeks to months later and 
patients may have deficits lasting for years. Therefore, patient follow-up 
is crucial [13].

Patients with signs or symptoms of CO poisoning should be placed 
on supplemental oxygen to increase tissue oxygenation and hasten the 
dissociation of CO from hemoglobin [3]. The addition of hyperbaric 
oxygen accelerates this dissociation, treats tissue hypoxia, reduces the 
harmful inflammatory response that can occur in damaged tissue, 
and protects against oxidative stress [14,15].  Despite various findings 
in differing studies and reviews such as the Cochrane review, which 
discusses a trial that has been under scrutiny for using inadequate 
dosing of HBO2, HBO2 has been shown to decrease the incidence of 
cognitive and cerebrovascular abnormalities and improve long term 
neurological outcomes [16-19]. This treatment is recommended by the 
UHMS and is rated as a Class I – Strong recommendation (American 
Heart Association Classification) [13].  

HBO2 consultation should be considered in patients with signs 
of significant CO poisoning (e.g. severe acidosis, cardiovascular 
dysfunction or injury, loss of consciousness, neurological problems, or 
COHb ≥ 25%), with the optimal benefit occurring with the least delay 
[20-22]. The most optimal time to HBO2, to prevent delayed neurologic 
sequence, is within 48 hours of exposure [23].

Crush Injury and Skeletal Muscle Compartment Syndrome

For both crush injuries and skeletal muscle compartment syndrome, 
trauma and subsequent tissue hypoxia are involved in a vicious cycle 
that ultimately lead to limb threatening damage. Following the initial 
insult, bleeding or edema within the compartment can collapse the 
microcirculation leading to tissue ischemia and hypoxia. Hypoxic cells 
leak intracellular water leading to further edema and third spacing 
of fluid. This ischemia-edema cycle continues until compartment 
syndrome is fully established and emergent fasciotomy is needed.

If delivered early, HBO2 may benefit the patient through several 
mechanisms. First, HBO2 offsets tissue hypoxia by increasing oxygen 

tensions in plasma as well as tissue fluids. This increases the diffusion 
distance of oxygen from the capillary to the cell [24,25]. Secondly, 
HBO2 reduces edema by inducing vasoconstriction, reducing capillary 
inflow and decreasing hydrostatic pressure in the capillary bed. It does 
this while maintaining fluid outflow with resorption of fluid at the 
capillary level further reducing fluid built up within the compartment 
[26-31]. Lastly, HBO2 can mitigate oxidative reperfusion injury by 
interfering with neutrophil adhesion to the endothelium and providing 
an oxygenated environment to produce oxygen radical scavengers that 
are responsible for reducing reactive oxygen species [32,33].

The best argument can be made for patients in the impending 
compartment syndrome stage. When the patient begins to develop 
signs and symptoms associated with compartment syndrome (e.g. pain, 
hyperesthesia, weakness, discomfort with passive stretching of toes, or 
tautness of the compartment) compartment pressure measurements 
should be made by the provider caring for the patient in any location 
(e.g. covering in an Emergency Department in a rural facility). In the 
impending stage, the patient has not reached the threshold requiring 
fasciotomy. Consideration and consultation for HBO2 should be made 
at this time, given the opportunity to intervene in the edema-ischemia 
cycle and potentially prevent the compartment syndrome advancing to 
requiring fasciotomy [34,35]. 

Additionally, the cost effectiveness of HBO2 is evident. It has been 
reported that when HBO2 was started during the impending stage 
of compartment syndrome, the total costs were 75 percent less than 
having to complete HBO2 following a fasciotomy procedure [36]. It is 
estimated that the cost savings for one patient to undergo a fasciotomy 
in the impending stage would be equivocal to ten patients undergoing 
HBO2 in the impending stage and halting their progression [13]. In 
addition, following crush injury, the same mechanisms may reduce 
healthcare costs through decreasing complications, reducing tissue 
loss, and morbidity. This can then improve patient outcomes, mental 
outlook, and ability to function [13,36]. 

Delayed Radiation Injury – Soft Tissue and Bony Necrosis

Radiation therapy is associated with several acute, subacute, 
and delayed complications following treatment. Many of the acute 
and subacute complications are self-limiting in nature or are treated 
symptomatically [37]. The delayed complications of radiation therapy 
may develop months or even years following radiation exposure. These 
delayed injuries may be precipitated by an additional insult such as 
surgery within the irradiated area [38]. These injuries, especially those 
that manifest months to years later with bony or soft tissue necrosis, 
require multi-disciplinary management in which medical providers 
play a crucial role in identifying patients at risk.

The mechanism of delayed radiation injury is not well understood 
at this time. However, it manifests itself as vascular obliteration and 
stromal fibrosis in the irradiated field [39]. HBO2’s ability to combat 
these changes following radiation is multifactorial. Mechanisms include 
stimulating angiogenesis, recruiting stem cells, improving oxygenation, 
and reducing fibrosis of irradiated tissues [40-42].

The largest and best studied application for HBO2 in radiation 
injury is in the treatment and prevention of osteoradionecrosis of the 
mandible. In osteoradionecrosis of the mandible, tooth extraction 
is a common precipitating factor and can necessitate subsequent 
mandibular resection and reconstruction. Pre- and post-surgical 
HBO2 has been shown to drastically decrease the occurrence and 
severity of mandibular necrosis and is an opportunity for providers 
to recommend a consult for HBO2 [43-45]. Recently this practice has 
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come into question in the HOPON Trial, however, the study displayed 
low incidence and was performed on patients receiving lower doses of 
radiation than in previous literature [46]. Additionally, HBO2 has been 
considered and utilized for radiation injury at other soft tissue sites, 
including injuries to the head and neck, radiation cystitis, and radiation 
proctitis [47]. Early utilization of HBO2 for delayed radiation effects is 
important for best outcomes. 

Given that the sequelae of radiation injury manifest themselves 
months to years following exposure, practitioners should be cognizant 
of the advantages of hyperbaric oxygen in the treatment and prevention 
of complications secondary to radiation therapy.

Enhancement of Healing in Selected Problem Wounds- 
Arterial Insufficiencies 

Non-healing, problem wounds (e.g., arterial insufficiency ulcers, 
pressure ulcers, and venous stasis ulcers) are an ever-growing challenge 
for healthcare providers. The chronicity, recurrence rates, and 
subsequent complications from these wounds represent an increased 
cost and burden to healthcare systems [48]. The addition to HBO2 
to standard wound-care management optimizes the environment for 
improved healing by reducing the microcirculation impairment and 
optimizing the local inflammatory response. 

The positive healing effect has been best studied and widely 
implemented in the treatment of infected, ischemic diabetic foot ulcers. 
Hyperbaric oxygen can mitigate the hypoperfusion, hypoxia, and 
prevalence of infection that is common in these non-healing wounds 
[49]. It does this by increasing the partial pressure of oxygen dissolved 
in the plasma, which subsequently increases the diffusion distance of 
oxygen at the tissue level. This increase in available oxygen reduces 
tissue hypoxia and provides an oxygen-rich environment optimal for 
neutrophils, fibroblasts, and macrophages to carry out necessary repair 
or immune functions [50-55]. In addition, hyperbaric oxygen has been 
shown to stimulate angiogenesis and promote tissue growth [56-61]. 

This practice has been studied for more than 50 years and has 
continued to be evaluated. Despite varying outcomes in wound healing, 
promising results have continued to prevail and HBO2 has shown to 
decrease amputation [62-64]. Therefore, patients with problematic 
hypoxic lower-extremity wounds (i.e. wound PO2 < 40 mmHg) such as 
diabetic foot ulcers, hyperbaric oxygen is a valid adjunctive therapy and 
referral to HBO2 should be strongly considered. 

Central Retinal Artery Occlusion
Central retinal artery occlusion (CRAO) is an emergent condition 

resulting in sudden, painless vision loss that is associated with an 
overall poor prognosis. 

In patients who present with sudden painless vision loss, evaluation 
of visual acuity along with fundoscopic exam should be performed 
and documented. In addition, an ophthalmologist should be consulted 
emergently. Additional diagnostic work-up is necessary to screen and 
identify predisposing conditions that may help guide further decision 
making. However, prompt supplementation of oxygen to ischemic retina 
is of the utmost importance and should not be delayed while awaiting 
the arrival of consultations or further diagnostic testing [13,65].

If oxygen supplementation at normal atmospheric pressure is 
ineffective at restoring vision, HBO2 consultation and hyperoxygenation 
via HBO2 should be initiated. The timing of reoxygenation is essential 
in CRAO, with improved outcomes in patients who receive proper 
treatment within 90 minutes of symptom onset. Although, good 

outcomes have been reported as late as 24 hours after vision loss [66-71]. 
However, even with optimal treatment, the patient outcome is largely 
dependent upon the severity of the CRAO, the vessel occluded, the 
degree and location of the occlusion, as well as the underlying etiology 
of the occlusion [72,73]. Overall, recent publications have displayed 
improvement in visual acuity with timely HBO2 onset [74,75].

Idiopathic Sudden Sensorineural Hearing Loss
Idiopathic sudden sensorineural hearing loss (ISSHL) is defined 

as a loss of ≥ 30 dB occurring within three days over at least three 
contiguous frequencies [76]. This may present as a patient who 
complains of sudden unilateral hearing loss, tinnitus, aural fullness, 
and vertigo [77,78]. 

The etiology and pathophysiology of ISSHL remains unclear; 
however, it is now known that perilymphatic oxygen tension is 
significantly decreased in patients who present with ISSHL. This results 
in decreased oxygen delivery to the cochlea and associated structures 
(in particular, the stria vascularis and the organ of Corti) [79,80]. The 
need for improved oxygen delivery is the primary rational for utilizing 
HBO2 in treating ISSHL. HBO2 greatly increases arterial perilymphatic 
oxygen concentration, increasing oxygen delivery to the cochlea and 
associated structures [80-82]. In addition, there are other potential 
benefits of HBO2 including blunting of ischemia-reperfusion injury, 
edema reduction, and anti-inflammatory effects. 

Patients who present with sudden sensorineural hearing loss should 
be evaluated by an otolaryngologist and audiologist in a timely manner. 
Those determined to have ISSHL may benefit from the addition of an 
HBO2 consultation and HBO2 as adjunctive therapy, with the best 
outcomes within two weeks of symptom onset and initiated as soon as 
possible [77].
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