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Abstract
Many cancers have been characterized by their expression of multiple “driver” oncogenes [1]. This implies a sequence of crucial developmental “decisions” required 
to implement an oncogenic “program”. Are all or at least most of these decisions deterministic and others “stochastic” in implementation? Certain inborn errors of 
metabolism and hereditary cancers are largely deterministic. And yet to account for the widespread differences in detail of gene expression within and between cancer 
cells from different regions of the same cancer, to what extent are these variations at a fine-grained level subject to “decision trees” or “nodes” that may often depend 
upon stochastic events, engrafted on to more fundamental cell, tissue, organ or unfolding aberrant cancer-oriented deterministic programs [2,3]? Considering 
that many epithelial cancers develop over a number of years, does an admixture of determinative and stochastic decision-events contribute to a protracted 
maturation of epithelial cancers? The potential effect of cellular stress such as that due to hypoxia on the outcomes from stochastic events is uncertain.We 
consider some of these questions, employing a differential–logistic Monte Carlo simulation with continued stochastic input to a fixed carrying capacity, K, 
of slowly and rapidly proliferating daughter cancer cells as a visual model for this discussion. An Appendix with further details of the programs employed is 
provided at: www.uic.edu/nursing/publicationsupplements/stochastic Anderson Rubenrstein Guinan Patel.pdf

Introduction
It is the case that many genetic and epigenetic events affecting human 

cancers are considered to occur “stochastically”, as distinguished from 
those occurring deterministically or randomly [4-8]. From one point 
of view, for example, that of radiation carcinogenesis, deterministic 
effects on cells exhibit a threshold and their effects are dose-dependent. 
The likely outcome of converting some “normal” cells to cancer cells 
is subject to quantification, but which specific cell will be affected is 
uncertain. For stochastic processes associated with ionizing radiation, 
thresholds should not exist, the probability of occurrence depends 
upon the absorbed dose and the severity of effect is independent of it 
[9]. 

A stochastic process can be defined as a system evolving over time 
that undergoes “chance” fluctuations. A more analytic definition is 
that of Claude Shannon [10] as summarized by Gleick [11]. Stochastic 
processes are neither deterministic (the next event can be calculated 
with certainty) nor random, (the next event is totally “free”). A truly 
random process does not have predicable properties and while a 
chaotic system (“deterministic chaos”) does, they can be difficult if 
not impossible to identify [12]. Randomness is a form of “incomplete 
information”, essentially inaccessible due an inability to identify the 
uncontrolled “causes”.

Each stochastic event has an overall probability dependent upon 
the prior “state” of the system, contingent upon its’ history. In its’ 
purist form, the variance and mean of a true stochastic process are 
equal, characteristic of a Poisson distribution [13]. Stochastic circuits 
can be designed to produce fairly reproducible behavior [5]. Thus the 

relative probability of occurrence of an event need not be the absolute 
single defining feature. However, as a first approximation, mentally it 
seems useful to distribute most deterministic, stochastic and random 
events along some sort of probability-axis.

Of course no future event is entirely “free”. Its’ position in its’ 
local universe depends upon its’ history and contingent features (e.g., 
intrinsic and extrinsic “noise” [6] associated with the context in which 
it is sited. Single events cannot be directly compared with multiple 
ones exhibiting overall statistical predictability. The likelihood of an 
individual radioactive atom decaying is unknown although in bulk, 
an overall probability (half-life) can be measured. Some extremely 
rare events that initiated major biological speciation, established rare 
inborn errors of metabolism or structure or hereditary malignancies 
affecting a very few families seem to represent examples of uncommon, 
previously established “random” genetic events maintained within 
narrowly circumscribed limits.
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It has been increasingly observed that human cancers include 
multiple clones of related but genetically and phenotypically non-
identical malignant cells [14-19]. In point of fact, no two cells from 
the same or different lineages are likely to be truly “identical” when 
compared at a sufficiently fine-grained level (“genetic mosaicism”) 
[17,19]. Cancer cells are believed to include specific “Mut driver” 
mutations and aberrantly expressed “Epi-driver” events involving 
proto-oncogene and suppressor genes primarily responsible 
for subverting normal differentiation and directing subsequent 
development toward abnormally regulated cancer cells [1]. Malignant 
cells are thought to be accompanied by “progressor” and “passenger” 
mutations; the latter do not confer any direct or indirect proliferative 
advantage on members of the clone. The flow of cancer-related- events 
is often represented as a developing, arborizing, tree-like structure, 
representing the distribution of genetic and metabolic changes among 
the numerous “daughter” cancer cells [3]. These changes are due to both 
altered DNA and to epigenetic changes in nucleic acids and proteins 
[20]. Important regulatory roles related to elements in the 99 percent 
of the genome that does not specify the exome cellular structural and 
enzymatic elements introduce additional levels of regulation [21,22].

Stochastic events are considered essential for the development 
of malignant processes [3,23], especially as they might influence the 
protracted nature of the process. Modeling their potential contribution 
employing a deterministic Monte Carlo simulation that includes a 
component of stochasticity can provide a general insight as to how 
these events might interact over time to influence development of 
somewhat dissimilar developing “oncogenic” programs in genetically 
related cancer cell clones. What is uncertain is the extent to which 
metabolic capabilities already resident in the cancer clones contain all 
the essential elements required for integration into the unfolding cancer 
developmental program or whether significant improvisations of 
existing or of new configurations of genetic or epigenetic developments 
with new capabilities of interacting are required before a subsequent 
stage in the oncogenic program can be expressed. To what extent could 
a delay in any of the stochastic improvisations retard the rate at which 
the cancer develops? 

Methodology and characteristics of a model
Currently it is thought that breast cancer can be classified into 

four major categories of which some 78 percent are intra-ductal 
adenocarcinomas [24]. As an example we assume an instance in which 
a breast cancer occurring in a hypothetical patient age 50, involving 
some definitive initial oncogenic event, potentially followed by a 
median number of 32 (range ca 20 to 73) additional non-synonymous 
(a mutation altering the amino acid sequence of a protein) oncogenic 
decision “events” [1], of which apparently only some may be absolutely 
essential to initiate and define the cancer. Presumably, over the 
following years, expression of a limited subset of the 70 or so altered 
protein coding genes must be expressed in some sort of order, 
culminating in a cancer containing 109 or more cells. A mass of cells 
that size should be detectable by physical examination and half that 
number (109 / 2) cells by X-ray. 

To portray the background for representing and discussing 
some of these questions, we employed a Monte Carol simulation 
[25,26], using a logistic model of rapidly or slowly growing simulated 
cell proliferation [6,27-29] subject to continued stochastic “noise”. 
Comments concerning the programs employed and their use can be 
found at: http://go.uic.edu/OncogeneMutationAppendix

Results 
Employing a representative logistic equation and depending upon 

the parameters chosen, a series of growth curves with a gradually 
increasing time to appearance (TPA) to the carrying capacity, K was 
generated. Once K is reached, cells are considered to enter a quiescent 
phase that precedes their further “history”. With a fixed carrying capacity, 
K (the number of cells that can proliferate in the local environment), 
an initial cell (po=I) and an increasing r (the proliferation rate, p–death 
rate, d) shortened the TPA and the time to achieve 5x104 K; reducing 
r lengthened it (Figure 1). When K was increased and r held constant, 
as expected, the TPA increased (not shown). Continuous stochastic 
simulations, represented by the generation of random numbers, 
introduced a number of potential “alternative” clonal proliferation 
histories (Figure 2). A single cell considered to express an initiating 
“driver” cancer mutation(s), (left plot, slowly growing (K=50,000; 
r=0.25) generates multiple notational daughter cells represented by the 
small squares that lie on, near or further away from the line representing 
the average behavior of the population over time t. These “cells” and 
their progeny can be imagined to represent potential clones expressing 
differences in proliferation rate, especially if above the average and/ 
or other genotypic or phenotypic properties. In the histogram of the 
error term, et, negative values are ignored; an initial cell was considered 
to have initiated the proliferation. The frequency of random “events”, 
cs, and the distribution of random numbers, et both begin to assume 
the symmetry of a Bell curve. In Figure 3, the stochastic “fast” model 
(K=50,000, r=7) provides comparable information subject to a 
different random sequence, since each “cell” is at risk from individual 
and possibly unique stochastic events.

Slowly and rapidly proliferating “cells” at 5000 and 500 values of K 
were studied with comparable results (not shown). The distribution of 
these stochastically generated “cells” was more variable and care needs 

Figure 1. Representative Growth Curves with a Constant Carrying Capacity of 50,000
Left (upper) panel, slow proliferators, r from 0.25, 0.7, 0.9 and 1.0, right to left and right 
panel, fast proliferators, r from 5.0, 6.0, 7.0 and 8.0, right to left. Abscissa- arbitrary time; 
ordinate- number of cells
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to be taken in choosing parameters to depict them. These programs 
are presented in the Appendix, accessible on the web with directions 
for their use. The chief limitation in scalability seems to be the value 
chosen for the scaleval; a ratio of scaleval/K=0.125 to 0.016 are the 
values employed in the two programs. 

Each stochastic “event” represents some form of “singularity” that 
may be considered to alter that Individual cells’ history, depending 
upon the state of the affected cell and its’ ability or inability to respond 
to the “event”. As the appearance of these singularities depends upon 
the generation of random numbers, the ordering of the sequences for 
each cell is unique. 

The program of course excludes “negative” cells lying below 
zero on the Y axis. Initially there is an apparent lack of cells vis a’ vis 
stochastic “events” and also at the end of the run when K is approached. 
The early proliferative “events” occur exponentially; later events are 
terminated according to the logistic equation. Large K values greatly 
compresses “events” compared with results with smaller K values, 
affecting scalability by obscuring finer differences apparent with lesser 
numbers of cells. 

Discussion
As a visual representation of the potential contribution of 

stochastic events in multiple but closely related cancer clones in 
different regions of a cancer and subject to a continued stochastic 
history, a modified logistic-`proliferative equation [28,29] can be 
viewed as mimicking aspects of that outcome. It is tempting to 
interpret the numerous individual paths culminating notationally in 
some clones differing for example, in apparent proliferative potential. 
These hypothetical, individual cells would, over time, be exposed to 
differing forms of intrinsic noise related to specific instances of gene 
and exome expression, in addition to extrinsic noise from fluctuation 
of components devoted to other aspects of cellular growth and survival 
[6,30]. A stochastic “event”, some form of “singularity” occurs that 
may alter the subsequent fate of that cell, depending upon its’ state, a 
function of its’ history. An altered proliferation rate or other regulatory 
or metabolic changes in individual “cells” related to stochastically 
generated genetic/epigenetic differences may be responsible.

Stochastic events can be identified by fluorescence, including 
fluorescence in situ hybridization (FISH) to measure proteins or 
multiple mRNAs or by quantitative single cell RT-PCR to distinguish 
between intrinsic and extrinsic “noise” [6]. If different genes in a cell 
respond in the same direction, that is consistent with a response to 
extrinsic noise [6]. In one early study, two copies of the same promotor 
were introduced into E. coli, one detected by a cyan fluorescent protein, 
the other by a yellow fluorescent protein [30]. Extrinsic noise was 
considered to affect both promotors in a correlated response, due to 
details of ribosomes, polymerases etc. If the promotors responded 
independently, this intrinsic noise was ascribed to randomness 
inherent in transcription and translation. 

To try and visually simulate this effect we applied sequences of 
random numbers, taken to represent the occurrence of unknown 
stochastic events to rapidly and slowly proliferating “cells”. Each 
individual event would be unique to that cell and no two cells would 
present identical intracellular environments in response to a stochastic 
“event.” Cells with unique histories would also be exposed individually 
to different stochastic events at differing times. Slowly and rapidly 
proliferating cells, representing different metabolic and phenotypic 
environments, could be expected to respond or not differently to random 

Figure 2. Deterministic and Stochastic Plots of Slowly Proliferating Notational Cells
Upper panels: Carrying capacity of 50,000, r (slow)=0.25; Lower panels: Et (error term) 
and c_ s: cells in stochastic model.

Figure 3. Deterministic and stochastic Plots of Rapidly Proliferating Notational Cells
Upper panel: carrying capacity K of 50,000, r=7; Lower panels: ET (error term) and c _s: 
cells in stochastic model.
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intrinsic and possibly extrinsic noise. Once rapidly dividing cells reach 
their K-value, both they and the remaining slowly proliferating cells 
continue to be at “risk” from stochastic events varying in sequence 
and kind. To the extent this modulation involved any of the 12 major 
driver categories and signaling pathways affecting cell survival, fate 
and genomic integrity [1] or programming that directs differentiation, 
genetically or phenotypically dissimilar clones should result. This could 
be especially true of cells subjected to hypoxic or other forms of stress 
[31-34].

In the C.elegans system it was proposed that in the absence of 
additional genetic variation, stochastic variation in the abundance or 
activity of “genetic interaction partners”, defined as genes and their 
products that influence the outcome of a mutation when genetically 
altered, determines the expression of the original mutation [35]. The 
signal transduction pathways that link the expression of an oncogene 
with downstream stochastic events, some affecting downstream 
“nodes”, might be delayed in their implementation. Stochastic responses 
would introduce a form of a “sum over paths” or over “histories” [36] 
with clones derived from daughter cells exhibiting different genomic/ 
epigenetic outcomes due to dissimilar pre and post stochastic histories. 

If a stochastic event increases the rate of proliferation or contributes 
to some differentiating event resulting in increased drug resistance, 
vascularity, reduced cell death etc., a clone of cells with augmented 
malignant properties may evolve, despite their emersion in a much 
larger number of other daughter cancer cells. Genetic drift involving 
small numbers of cells tends to favor the emergence of one clone 
while others become extinct [37]. However given a sufficiently robust 
positive growth advantage, unfavorable chance events of genetic drift 
could be and in cancer, apparently are often overcome [14-20]. If the 
event affected small numbers of regulatory molecules such as those 
affecting transcription [6], this might also mitigate countervailing 
effects of genetic drift. 

Individual fast and more slowly proliferating cells likely exhibit fine-
grained differences in genetic and epigenetic readouts [17,19]. There 
are several major considerations; over time, the differing stochastic 
(random number) events themselves and the state of each responding 
cell as it undergoes its proliferative and subsequent history. An 
unknown proportion of cells differentiate, become quiescent, senesce 
while others die from programmed cell death or necrosis. It is unlikely 
the number of cell divisions in the two categories of proliferation to 
reach a chosen “K” will be identical. The “sum over time” or “sum over 
histories” [36] of proliferative and developmental events for each cell 
will differ; at any moment no two cells at a fine-grained level are likely 
to be genetically or metabolically “identical” [31]. Cells undergoing 
extensive genetic changes of stress from, for example, hypoxia, expose 
additional genetic or other “targets” to stochastic effects superimposed 
on these programmed changes. In addition, the kinetic behavior of the 
different rates of proliferation further ensures that individual histories 
of their cells differ both within and between these categories. 

There is a crude analogy to be made between molecules of water in 
a wave and the cancer cells in a population. No two individual elements 
of either population are in a fundament sense “identical” to their 
neighbors, either in internal components related to structure, function 
or external location or motion. Yet despite differences in detail, many 
related to intrinsic properties and antecedent history, chance stochastic 
events of internal and external “noise” and infrequently, much more 
rare (random) fundamental alteration in their “developmental” 
histories, an overall determinative outcome; wave reaches shore, cancer 
cells proliferate, occurs.

As examples of potential contributions to “noise”, the frequent single 
nucleotide and copy number differences found in single cells [38,39] 
and studies of single mammalian cells demonstrating widespread (12 
to 24 percent) random mono-allelic gene expression could contribute 
to the stochastic genotypic and phenotypic differences during cellular 
proliferation [38]. These alleles were expressed independently and 
stochastically. 

If malignantly transformed cells and their progeny are subject 
to a series of essential cancer-related “decision trees”, a series 
of developmental “nodes” expressed over 10 to 20 years, clones 
that differ to some extent in genetic or epigenetic expression are 
inevitable. Hypoxic cancer cells represent one category of malignantly 
transformed, stressed cells [31-34,40,41] that present altered 
intracellular environments at risk for stochastic effects. Hypoxic cancer 
cells exhibit an aggressive phenotype, resistance to therapy, are prone 
to metastasize, contributing to poor patient survival [31]. Hypoxic 
cancer cells and hypoxia-induced factors HIF 1a, 2a and 3 alter the 
expression of at least several hundred genes and gene products, 
providing an altered genetic environment to respond to any stochastic 
incidents, and a stem cell- like phenotype associated with an epithelial 
to mesenchymal transition [31,33,40,41]. Metabolic changes include 
reduced oxidative phosphorylation, increased anaerobic glycolysis, 
a switch to glutamine for fatty acid and energy synthesis, increased 
synthesis of angiogenic factors such as VEGF, resistance to radiation 
and chemotherapy, and importantly, impaired DNA repair [41] and 
several other forms of genomic instability. While hypoxic cells exhibit 
significant proliferation, upon re-oxygenation, rates of proliferation 
increase. Hypoxic and other stressed cells and their progeny seem likely 
candidates to express unexpected responses to intrinsic and extrinsic 
stochasticity, compared with unstressed normoxic cells. This should 
contribute to the genomic and phenotypic diversity observed in clinical 
cancers [19-22]. In a study of gliomas arising from dedifferentiation of 
normal cells, about half the mutations detected in the original tumors 
were not found in their metastases [42]. Although much of this diversity 
is considered due to “passenger” events, retention of essential driver 
events presumably underwrites the overall oncogenic “program”. A 
“cross section” of genomic differences among cancer clones in different 
regions of a tumor subject to the arborization of multiple cell divisions 
in many potentially distinctive lineages should inevitably include many 
differences in fine cellular detail.    

Summary	
A modified Monte Carlo simulation retaining stochasticiity during 

simulated cell proliferation can representationally mimic opportunities 
for potential stochastic effects on cancer cells contributing to their 
mosaicism. Such putative effects [43] seem even more likely to 
affect cells under stress such as hypoxia with activation of numerous 
compensatory genomic events at risk from stochastic events. The 
time required for transition from one stage of oncogenesis to the next 
may be influenced by or even depends upon stochastic events, acting 
upon stressed cell responses contributing to the delay in evolving fully 
malignant clones capable of metastases. 

The “sum-over-paths” or” sum-over- histories” [36], with their 
interaction of multiple components that reinforce or cancel one 
another, in some ways resembles the random and stochastic generation 
of outcomes underlying the contingent evolution of biological life. 
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