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Abstract

The paper is based on the long discussed question of the origin of circumscribed necroses in glioblastoma multiforme. They were interpreted as an ischemic consequence
of a vessel occlusion by thrombotic events or by an endothelial pathology. However, they were referred to the emergence of an avascular area in hyperproliferating
zones of tumor, due to the imbalance between the high proliferation rate of tumor cells and the low one of endothelial cells. The hypoxia stimulates angiogenesis and
microvascular proliferations can be found around to and at a distance from circumscribed necroses. Later on, with the diffusion of the concept that glioblastomas
arise from tumor initiating cells or tumor stem cells, the location of the latter in the tumor was found to occur in perivascular and perinecrotic niches. These sites
were recognized as responsible for tumor progression and proliferation. In the past we have already contributed in both fields. Presently we wanted to unify the two
concepts showing that the origin of circumscribed necroses and the location of tumor stem cells in perinecrotic niches recognize the same pathogenetic mechanism.

Our presentation is not at variance with previous ones, but it aims to be added as a further possible interpretation.

Two main types of necrosis occur in glioblastoma multiforme
(GBM): large necroses of thrombotic origin, usually at the tumor
center, and circumscribed necroses with pseudo-palisading. These are
found in the proliferative areas of the tumor of which they represent
the hallmark. Instrumental to necrosis development is hypoxia,
variably spread throughout the tumor, to the point that it is a feature of
it [1]. Hypoxia is mediated by Hypoxia-Inducible Factor (HIF)-1/2 that
is composed of two subunits, an oxygen regulated HIF-a subunit and
an oxygen insensitive HIF-B subunit [2]. Under normoxic conditions,
HIF-a is rapidly degraded through hydroxylation by the oxygen-
dependent prolyl-hydroxylase domain proteins (PHDs), that marks it
for ubiquitination and proteasomal degradation [3]. Hypoxia stabilizes
HIF-1a by preventing its hydroxylation and degradation, together with
HIF-2a. HIF-2a remains elevated under chronic hypoxia, while HIF-1a
is only transiently up-regulated [4]. It is of paramount importance that
hypoxia is critically involved in the regulation of glioblastoma stem cells
(GSCs) [5]. Through HIF-1a, it promotes the expansion of GSCs by
the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-
regulated protein kinases 1 and 2 (ERK1/2) pathways, the inhibition of
which reduces the fraction of CD133+ GSCs [6]. GSCs are, therefore,
activated in perinecrotic regions [5,7] and under hypoxic conditions,
when Notch and its target genes Hesl and Hey2 are successively
activated [8]. Blockade of Notch signaling with y-secretase inhibitors
depletes the GSC population, reduces the expression of GSC markers
such as CD133, Nestin, Bmil and OLIG2 and inhibits the growth of
tumor neurospheres and xenografts [9]. Also the key stem cell genes
such as Nanog, octamer-binding transcription factor 4 (Oct4) and
c-Myc are activated [10]. GSCs can be demonstrated to lie around
circumscribed necroses or scattered in the tissue by CD133 positivity
or other specific antigens [5,11].

Necrosis is the consequence of hypoxia and to find it in the tissue
means that HIF-1/2 must have been active, but this process needs
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time and it is possible that HIF-1/2 are activated by hypoxia when its
consequences are not yet histologically visible in the tissue, but other
processes may have been already elicited. An example is given by
apoptosis, a frequent phenomenon in GBM. Apoptotic nuclei can be
found either scattered in proliferating tumor areas, due to an intrinsic
or transcriptional pathway via mitochondria, focused on p53 [12],
or they crow in hypoxic areas around necrosis through an extrinsic
pathway starting from Tumor Necrosis Factor (TNF), through APO-
2 and TNF-related Apoptosis-Inducing Ligand (TRAIL) [13]. It is,
however, possible that isolated apoptotic nuclei in a proliferating area
are not due to the first type of apoptosis, i.e. the intrinsic one, but to
the extrinsic type, consequence of the not yet morphologically evident
hypoxia [14], as said before. As a matter of fact, HIF-1a expression
can occur not only in or around circumscribed necroses, but also in
scattered cells in proliferating areas [15].

Circumscribed necroses in GBM are the hallmark of the tumor,
but their origin and development have been the object of endless
discussion. Recently, they have been carefully described and codified
[16,17] as due to an ischemic process around an occluded vessel or
with endothelial changes. The consequent hypoxia would stimulate
angiogenesis, through HIF-1 and Vascular Endothelial Growth Factor
(VEGF). In addition to this hypothesis, another one has been and can
be advanced. Necroses may develop in hyperproliferating areas of
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the tumor, with a high Ki-67/MIB.1 Labeling Index (LI) and a high
Nestin expression in comparison with Glial Fibrillary Acidic Protein
(GFAP), as a consequence of a focal insufficiency of angiogenesis that
becomes inadequate to feed a so large number of tumor cells, due to
the imbalance between the high tumor cell proliferation capacity and
the low one of endothelial cells [18,19]. This observation does not
exclude that inside necroses regressive pathological vessels can occur.
In GBMs, beside areas with a high vessel density due to an active neo-
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Figure 1. Circumscribed necrosis in a hyperproliferating area, H&E, 200x (A). The
hyperproliferating zone bordering necrosis is almost GFAP-negative, GFAP, DAB, 200x
(B) and 400x (C). The same area is highly Nestin-positive, Nestin, DAB, 200x (D) and
400x (E). The same area shows a high Ki-67/MIB.1 labeling index, Ki-67/MIB.1, DAB,
200x (F) and 400x (G). Id. for SOX2, SOX2, DAB, 200x (H) and 400x (I). The same area is
positive for Musashi. 1, cryostat section, immunofluorescence, 400x (J) and highly CD133-
positive, cryostat sections, immunofluorescence, 400x (K).
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Figure 2. Scheme illustrating the development of a circumscribed necrosis in the avascular
zone of a hyperproliferating area with stem cells/progenitors remaining to circumscribe it.
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Figure 3. Scheme illustrating the acquisition during normal cytogenesis and the loss in
tumor dedifferentiation of stemness properties.

angiogenesis, large avascular areas can, therefore, occur where necroses
develop. The perinecrotic palisades would be the remnants of the
hyperproliferating area that escaped necrosis development.

It is currently known that GSCs are localized in perivascular and
perinecrotic niches, expressing CD133, Musashi.l, Nestin, or specific
antigens [5,11,20,21], activated by HIF-1. Regardless of the nature
of these cells, i.e. whether they are real stem cells or progenitor cells
with a stemness hierarchy and of their demonstration after or without
sorting, they are also positive for Oct4 and Nanog [22,23] as well as
for Sex-Determining Region Y (SRY)-box2 (SOX2) and RE-1-silencing
transcription factor (REST) [15,24] (Figure 1). In our experience, they
show the same features that characterize the majority of cells of the
hyperproliferating areas. The cells of this areas represent the most
malignant tumor phenotype after mutation accumulation and tumor
microenvironment influence, and they may undergo an embryonic
regression re-acquiring properties that are typical of stem cells/
progenitors [15,25]. As perinecrotic palisadings could be the remnants
of hyperproliferating areas spared by necrosis [15,26], so perinecrotic
accumulation of GSC-like cells/progenitors could be the remnants of
those that crowded hyperproliferating areas (Figure 2).

This interpretation is not at variance with those till now proposed
for the origin of circumscribed necroses with pseudo-palisadings of
GBM, but it adds a possible different understanding of the relationship
between GBM and its GSC-like cells. There is a resemblance between
our images of perinecrotic SOX2 distribution and that of CCAAT/
enhancer binding protein (C/EBP)-B and signal transducer and
activator of transcription 3 (STAT3) found in mesenchymal class of
GBM [27], activated by hypoxia and conditioning a bad survival. In
culture of neural stem cells (NSCs) they prevent neural differentiation
and trigger reprogramming toward an aberrant mesenchymal lineage
and they are essential for mesenchymal transformation and glioma
aggressiveness [28]. While STAT3 induces astrocyte differentiation and
inhibits neuronal differentiation of neural stem/progenitor cells, C/
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EBP-B promotes neurogenesis and opposes gliogenesis. One wonders
how the combined activity of C/EBP-B and STAT3 can be conceived
to reprogram NSCs toward an aberrant lineage (mesenchymal) and to
oppose the genesis of the normal neuronal and glial lineage. Maybe,
their expression in human gliomas is essential to maintain the tumor
initiating capacity and the ability to invade the normal brain [29].

The origin of GBM is still under discussion and practically only
hypotheses are at our disposal. However, it remains established,
since Penfield (1932) and Globus and Kuhlenbeck (1944) [26,30],
that gliomas derive from immature glia. The most credited theory is
that they derive from the transformed NSCs [31-33], regardless this
transformation takes place in the subventricular zone (SVZ) or during
migration. Glioma-initiating cells (GICs) and GSCs [34] share with
NSCs some properties, i.e. proliferation and self-renewal, and GSCs
share with malignant gliomas the genetic alterations.

A possible origin of gliomas is also from mature astrocytes by
acquiring stemness properties through a dedifferentiation process,
as above mentioned [35,36]. Recently, the hypothesis has been put
forward that the origin could be from NG2+ cells that would fit better
with tumors arising far from the ventricles such as oligodendroglioma,
but also astrocytomas or secondary GBMs [37,38]. Also reactive
astrocytes could be candidate for glioma origin [39,40], since they can
acquire a stem-like phenotype [41]. GSCs may not represent a cell type,
but rather a functional status [42,43], which can be acquired or lost
depending on the microenvironment [25]. As stem cells/progenitors in
the normal cytogenesis lose stemness properties during differentiation
upon a complicated regulation mechanism, dedifferentiating malignant
tumor cells can re-acquire them by embryonic regression, through a
hierarchy of stem cell or progenitor status (Figure 3).
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