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Abstract
The acute-phase protein α1-antirypsin (AAT) has recently been suggested to exert beneficial effects in various immune-associated pathologies, such as graft-
versus-host disease, rheumatoid arthritis, multiple sclerosis and allogeneic transplantation. These effects have been demonstrated to take place through direct 
immunomodulation of dendritic cells, macrophages, neutrophils and B cells, while allowing, in a yet inexplicable distinction, intact isolated functions of T cells 
and NK cells. With such a unique discriminatory targeting of immunocytes, AAT drives immune responses simultaneously towards regulation of inflammation and 
expansion of antigen-specific regulatory T cells (Tregs). Based on this intriguing activity profile, a concern was raised regarding the impact of chronic treatment with 
human AAT with respect to susceptibility to tumors and to metastatic spread. Tumor development is linked to inflammatory responses in a manner which largely 
promotes immune evasion. Local innate immunocytes, such as tumor-associated macrophages (TAMs), tumor-associated dendritic cells (TADCs) and the recently 
appreciated tumor-associated neutrophils (TANs), are considered instrumental in primary tumor survival. This is accomplished in part by the release of growth 
factors and cytokines, including VEGF, TGFβ, IL-10 and IL-1 receptor antagonist (IL-1Ra), all of which have been demonstrated to be elevated in inflammatory 
conditions during AAT therapy. While clinical studies report heightened serum AAT levels in patients with a variety of advanced tumors, there is no evidence to 
point to a particular pro-tumor effect of AAT, and the possibility that its elevation in the blood might represent a meresystemic marker– rather than an accessory to 
tumor development– is grossly overlooked. Indeed, preclinical studies reveal significant inhibition of tumor development during treatment with AAT, and prolonged 
follow-up studies of individuals who receive life-long excessive doses of intravenous AAT do not depict a rise in tumor occurrence. Considering the prospect of AAT 
being indicated for medical indications to individuals with normal levels of the protein, its relation to tumor immunology is of immense importance. We hereby review 
the current knowledge regarding some possible roles that AAT may play, both locally and systemically, in the delicate and detrimental arena of tumor immunology.

Introduction
Alpha1-antitrypsin (AAT) is a 52 kDa anti-inflammatory 

glycoprotein that has recently come to focus as an immune modulator 
[1,2]. Clinically relevant settings for harnessing its benefits include 
recent onset autoimmune diabetes [1], immunosuppression-resistant 
graft-versus-host disease (GvHD) [3,4], allograft transplant rejection 
[5], multiple sclerosis [6] and inflammatory bowel diseases [7]. At 
present, over half a dozen clinical trials evaluate the outcomes of 
infusing clinical-grade AAT to individuals with no genetic deficiency 
in AAT, in the context of modulating unwanted immune responses1.

The activity most identified with AAT is inhibition of inflammation-
facilitating serine-proteases, such as neutrophil elastase, cathepsin G 
and proteinase-3 (PR3) [8]. AAT is furthermore capable of inhibiting 
the activity of certain non-serine proteases, including caspase-3 in 
pancreatic β cells [9]. Another non-serine protease target of AAT 
includes MMP-9 both in a direct manner and an indirect one; MMP 
activation requires cleavage of pro-MMP by the main substrates of 
AAT [1], and also, AAT is cleaved and inactivated by members of the 
MMP family (MMP-1,3,7,8,11) [10,11].

A common circulating protein, serum AAT levels rise four- to 

six-fold during acute phase responses [1]. Indeed, the promoter 
of the gene for AAT is responsive to the IL-1 pathway, as well as to 
the IL-6 pathway and to hypoxia. The source of circulating AAT is 
primarily liver cells, yet AAT is also synthesized by lung and colon 
cells, presumably augmenting its presence in mucosal tissues. AAT 
may also be expressed by macrophages under particular conditions 
[12]. Interestingly, inflammatory oxidative bursts neutralize the anti-
proteolytic function of AAT, allowing activated neutrophils and 
macrophages to migrate and to exert bacteriocidic functions [13]. 
Indeed, in the past thirty years, life-long weekly infusions of plasma-
derived affinity-purified AAT have become the treatment of choice 
for AAT deficient individuals [14] and, despite prolonged exposure to 
excessive circulating AAT and its renowned anti-inflammatory profile, 
long-term studies indicate that treated patients exhibit an unexpected 
reduction in bacterial infection rates [1,15].

Various studies, including several conducted by our group, have 
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established that AAT exerts not only anti-inflammatory activities, but 
also antigen-specific immunoregulatory activities, as evident upon 
examining the collective outcomes of AAT treatment in several major 
in vivo models and immune cell types. For example, B lymphocytes 
[16], macrophages [17] and dendritic cells (DCs) [18] appear to 
become less inflammatory and more tolerogenic under treatment 
with AAT; of these, DCs display reduced expression and surface 
presentation of IL-15 [19] while they upregulate the secretion of IL-10 
and their migratory receptor CCR7 [18], and B lymphocytes exhibit 
diminished proliferation and compromised isotype switching while 
maintaining potent IgM secretion [16]. In contrast, isolated T cells and 
NK cells appear to be unaffected by AAT, thus NK cells and regulatory 
T cells (Tregs) are presumed to be modulated indirectly by virtue of the 
tolerogenic effects of AAT on DCs and macrophages [18,19]. Indeed, 
the immune tolerance induced by AAT in models of allogeneic islet 
transplantation is suggested to be mediated by alloantigen-recognizing 
DC-activated Tregs, which maintain long-term antigen-specific 
tolerance towards grafted allogeneic cells [20].

Cancer and circulating AAT: is there an apparent 
association?

Individuals that carry a genetic deficiency in AAT are at risk of 
developing lung emphysema, suggesting that an added role for AAT 
may exist, that is, the promotion of tissue repair and wound healing. 
Left untreated, these patients are also at risk of developing various forms 
of vasculitis, agreeing with the major biological interface in which AAT 
functions, i.e., the endothelial lining. However the deficiency in levels 
of circulating AAT are not the primary mechanism of pathology in 
these cases; the most damaging form of AAT deficiency, the Z allele, 
results in intracellular aggregates of improperly folded AAT in both 
liver and lung cells, concomitant with reduced serum AAT levels[21]. 
Intriguingly, AAT deficient individuals are also at risk for developing 
tumors of the liver [22,23], lung [24,25] and gastrointestinal (GI) 
tract [26]. Considering these aforementioned cellular aspect in AAT 
deficiency, these pathologies may result both from intracellular 
damage endured by AAT-producing cells, as well as by inappropriate 
low levels of circulating AAT [27]; whether replacement therapy with 
AAT diminishes these collective risks is yet to be determined. 

A mechanistic role for AAT in cancer biology and immunology is 
strikingly lacking in the literature, and the presently available studies 
might be misleading. On the one hand, a rise in serum levels of AAT 
and other acute-phase proteins has been documented in various forms 
and stages of cancer, including hepatocellular carcinoma [28], lung 
cancer [29,30], GI tract tumors [31], breast cancer [32], pancreatic 
cancer [33] and urinary bladder cancer [34]; on the other hand, these 
might represent the inflammatory response of a disease-stricken body. 
Similarly, in some cases, a positive correlation between serum or local 
AAT levels and tumor progression can be documented, alongside 
a negative prognosis. Upon deeper examination, certain superficial 
molecular modifications in AAT have also been reported to occur in 
cancer patients, including excessive glycosylation [35] and increased 
fucosylation in patients with ovarian cancer [36], hepatocellular 
carcinoma (HCC) and liver cirrhosis [37]. These studies, without 
exception, have regarded circulating AAT as a molecularmarker of 
cancer associated-inflammation, rather than a functional molecule. 

Certain in vitro studies provide observations of a more mechanistic 
value for AAT: AAT was shown to inhibit tumor growth and tumor-
elicited angiogenesis in nude mice [38], and the C-terminal portion 
of AAT that is released upon proteolytic cleavage (C36) inhibits 

NK cell activity in vitro; consistently, a C36–expressing pancreatic 
adenocarcinoma cell line proved more invasive, in vivo [10], yet 
there is no evidence to support the presence of native C36 in in vivo 
tumor models. In contrast, a study which employed a model in which 
a HCC cell line was treated with AAT and C36 in conjugation with 
neutrophil-conditioned medium, reported significant reduction in 
tumor invasiveness, [39]. Such an outcome is highly unexpected when 
considering that AAT caused an increase in VEGF expression, as 
corroborated in angiogenesis-related studies. In line with these findings, 
a series of studies centered on the MCF-7 human breast cancer cell line 
and revealed a negative correlation between AAT production by tumor 
cells and tumor cell proliferation; this was accompanied by a reduction 
in active TGFβ release and in in vivo invasiveness [40-42].

Circulating AAT, in the context of cancer, may thus introduce 
important aspects that relate to the various newly-appreciated functions 
of AAT. At least one of such activities has to do with the apparent 
association between AAT and TGFβ activities. TGFβ is expressed by a 
multitude of cellular populations, including M2-like macrophages and 
Tregs [43], and regulates differentiation, development and homeostasis 
in nearly all types of tissues [44]. TGFβ expression positively correlates 
with late stage tumor promotion, and the involvement of TGFβ in 
tumor progression and recurrence by way of promotion of immune 
evasion has been well documented [44]. For example, TGFβ interferes 
with naïve T cell differentiation into mature CD4+ T helper cells and 
CD8+ cytotoxic T cells [45] and induces the differentiation of tumor-
promoting CD4+ Foxp3+ Tregs [45]. TGFβ signaling is a highly 
regulated process which involves proteolytic cleavage of the inactive 
TGFβ proprotein; this cleavage is conducted by several families of 
proteases, which include MMPs (such as MMP-9 and MMP-2) [46], 
cathepsins [46] and proteinase 3 (PR3) [47]. Evidence points to 
effective inhibition of these proteases by AAT [1]. Nonetheless, when 
considering the influence of AAT on TGFβ, one must consider the 
involvement of several layers of AAT-related regulation. While AAT 
may directly inhibit proteases responsible for cleavage and activation 
of mature TGFβ, AAT may also indirectly increase local TGFβ levels 
by promoting the polarization of macrophages towards M2 profile. 
Indeed, while in vitro treatment of isolated monocultures of human 
breast cancer cells MCF-7 with AAT resulted in lower levels of mature 
TGFβ [40,41], in vivo studies demonstrate that AAT treatment 
results in an elevation of TGFβ levels [48], correlating with a shift in 
macrophage polarization towards M2 profile [20]. An example for the 
important of context in interpreting the activities of AAT involves an 
in vivo model of liver fibrosis, where hepatic synthesis of TGFβ is found 
to be significantly higher in transgenic mice carrying the Z allele of 
AAT [49]; in order to fully interpret this outcome one should take into 
consideration that the model incorporates acute liver inflammation, 
as instigated by intracellular aggregates of AAT, rather than a possible 
effect of reduced circulating levels of AAT.

AAT inhibits IL-6 production [50,51]. An instigator of systemic 
inflammation, as well as a major pleiotropic agent, IL-6 is also involved 
in neoplastic progression [52] and immune evasion [53,54], and may 
assist tumor cells in overcoming chemotherapy [52,53]. Considerable 
efforts have been made to block IL-6 activity in the context of tumor 
therapy [55-58]; thus, the fact that AAT downplays IL-6 levels 
represents one of several possible mechanisms of action in favor of 
interfering with tumor growth. However, reduced inflammation might 
also present as a window of opportunity for immune evasion by newly 
formed cancerous foci, and the conditions in favor of Treg expansion 
(i.e., IL-1↓, IL-6↓, TGFβ↑) might also preclude an effective immune 
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of immune cells; tumor-associated macrophages (TAM)and tumor-
associated dendritic cells (TADC) (see illustration) have been 
extensively studied and shown to mediate tumor progression and 
immune evasion in a variety of mechanisms [71-73]. Both of these 
cellular populations, TAMs and TADCs, are thought to originate from 
monocytes recruited into the tumor area from the bone marrow and to 
a smaller extent from the spleen. The influence of AAT on the behavior 
of these central players in tumor immunology has yet to be directly 
examined, yet various aspects of the effect of AAT on macrophages and 
DCs may shed light on possible ramifications of AAT treatment in the 
context of a tumor.

Macrophage M1 and M2 phenotypes are opposite extremities 
of a range of possible activation states, presumably forming a 
continuum rather than a binary activation pattern. While M1-
activated macrophages (mainly induced by IFNγ or LPS) are a rather 
homogenous population that facilitates a Th1-type cyototoxic response 
and tumor cell killing (by secreting IL-12, IL-18 and IFNα/β). M2-
activation, in contrast, is highly heterogeneous and may acquire one 
of several “M2-like” phenotypes, such as M2a (induced by IL-4 and IL-
13), M2b (induced by IL-1β and antibody immune complexes) and M2c 
(induced by IL-10, TGFβ and glucocorticoids, which have long been 
established as inducers of AAT expression). The M2-like phenotypes 
are differentiated both by expression of membranal markers as well 
as by cytokines and trophic factors which they secrete; while M2a 
macrophages are associated with tissue remodeling and late-stage 
wound healing by way of growth factor secretion, M2c macrophages 
actively regulate T cell cytotoxicity and promote regulatory T cell 
differentiation by secreting IL-10 and TGFβ [74].

TAMs facilitate immune evasion, as well as angiogenesis and 
tissue remodeling by secreting growth factors and angiogenic agents, 
including IL-6, TGFβ and VEGF [75-77], and also immune-regulatory 
molecules, such as IL-10, IL-1 receptor antagonist (IL-1Ra) and the 
IL-1–neutralizing soluble IL-1R [43,71,78]. TAMs share numerous 
properties with M2-activated macrophages, but nonetheless must 
be viewed as a separate population to M2-activated macrophages. 
TAMs are considered to originally acquire M1-like properties upon 
infiltration to a tumor, and are then skewed towards an M2-like profile 
in advanced tumors as a result of exposure to factors secreted by tumor 
cells [43,71] or tumor-associated fibroblasts (TAF) [79], including 
TGFβ and IL-10. Two major hallmark attributes of macrophages are 
their longevity and plasticity; indeed, numerous factors are known to 
significantly skew macrophage activation profiles across a wide range 
of phenotypes [80,81]. Thus, many therapeutic approaches are based 
on the prospect of shifting tumor-associated macrophages towards M1 
profile, rather than depleting macrophages altogether [80,81]; this is 
based upon the trend of minimizing systemic immunosuppression, 
and utilizing the highly advantageous prospect of macrophage-assisted 
T cell killing of tumor cells. Thus, any possibility of significantly re-
directing TAM activation, e.g., by way of AAT treatment, must be 
considered. 

Quite unexpectedly, it was recently found that AAT is expressed by 
macrophages under a hypoxia-activated promoter [12,82]. Its release 
from macrophage cells was most apparent in M1-like macrophages 
[83]. Added to cultures and tested in animal models, AAT is further 
suggested to drive macrophages towards an M2-like profile, as indicated 
by increased efferocytosis [84], increased IL-1Ra secretion [85] and 
reduced TNFα production [17]. Each immunological setting must, 
however, be appreciated in its larger context, especially in light of the 
highly differential conditions which exist in any experimental tumor 

response against cancer cells. Yet, treatment with excessive doses of 
AAT does not expose patients to cancer.

AAT is a highly selective immunomodulator that allows 
T cell and NK cell responses

All studies that examined IL-2–driven isolated T cell responses 
have reported intact T cell activation in the presence of AAT, 
separating AAT categorically from classic immunosuppression [20]. 
An intact T cell and NK cell population is undoubtedly a positive factor 
in eradicating tumors; yet it is an unexpected observation that neither 
cell types, once in an isolated or enriched culture, alter their response 
in the presence of AAT. As in T cells, NK cell activation is an intricate 
process,the sum of activating and inhibitory membranal signals. 
Among the best characterized NK cell activating receptors are NKG2D 
and NKp46. NKG2D is expressed by NK cells as well as αβ and γδ T 
cells, and is considered central to recognition of ligands expressed by 
cells that have undergone malignant transformation or viral infection 
[59]. NKp46, on the other hand, is expressed solely by NK cells, and 
is critical for NK cell recognition of viral haemagglutinins associated 
with infection by influenza virus, as well as recognition of tumor 
cells, as exemplified by effective inhibition of NK cell cytotoxicity by 
NKp46-blocking monoclonal antibodies [60]. Importantly, NKp46 was 
recently proven to be the NK cell receptor responsible for recognition 
and subsequent cytotoxicity against pancreatic β cells in the context of 
autoimmune type 1 diabetes [61-63].

Expression of the activating receptors NKp46 and NKG2D by 
NK cells has recently been studied. According to the report [19], both 
receptors are unaffected by short-term in vivo AAT treatment, yet 
NK cell degranulation towards pancreatic β cells is downregulated. 
Interestingly, degranulation was not diminished towards AAT-treated 
tumor cell lines). In another study that examined a model of B cell 
lymphoma, AAT treatment was reported to maintain and in some 
respect to even enhance graft versus leukemia (GVL) response upon 
bone marrow transplantation [3]. This reported effect was suggested to 
be dependent onan expanded population of NKG2D+ NK cells and the 
maintenance of a CD11c+ DC population [3]; all the while, CD8+ T cells 
were unaffected by the presence of AAT. 

CD8+ T cells are critical players in the eradication of tumor cells, 
as they provide both direct killing and elevate local IFNγ levels thus 
promoting tumor-suppressing Th1 responses [64-69]. That a native 
molecule holds the capacity to distinguish cytotoxic-worthy targets 
(such as tumor cells) from protection-worthy antigenic targets (such as 
allografts) is indeed perplexing. The choice of any organism to elevate 
systemic AAT levels during infections may, in this regard, facilitate 
the minimizing of self-recognition and diminish the development 
of aberrant cells and tumors. In addition, although IL-2–activated 
T cells are unaffected by AAT, the process of antigen presentation 
and activation of T cells by antigen-presenting cells is undoubtedly 
modified by AAT treatment, as activated B cells, DCs and macrophages 
all shift towards an IL-10–producing phenotype in its presence. While 
these changes may collectively explain some of the outcomes of AAT 
treatment in tumor models, a complete mechanism of action is still to 
be identified.

Local considerations: AAT modifies local antigen-
presenting cell profiles

Tumor development occurs concomitantly with subversion of 
anti-tumor immune responses [70]. Yet a tumor mass is not absent 
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model. Thus, being that hypoxic conditions lead to stabilization of 
hypoxia-inducible factor-1α (HIF-1α) and HIF-2α [86] and that AAT 
is induced by hypoxia, one must take into account the tight association 
between local conditions and AAT expression in the detrimental 
junction of TAM profile acquisition. 

Much like macrophages, activated mature DCs (mDCs) are highly 
immunogenic cells, which specialize in antigen presentation and 
activation of, among others, cytotoxic T cells and NK cells, by way 
of IL-12, IL-18 and IFNα/β secretion and by trans-presentation of 
surface IL-15 [86]. Alternatively activated DCs (termed semi-mature 
DCs or smDCs) actively induce antigen-specific tolerance by way of 
either T cell deletion, energy or the promotion of Treg maturation and 
expansion [72,86,87]. Much like in the case of M1 and M2 macrophages, 
mDCs and smDCs are two opposite extremities and a continuum of 
possible activation states, rather than a binary programming pattern, is 
predicted to best reflect the state of DC maturation; indeed, numerous 
“intermediate” activation states have been described. In this regard, 
AAT has been shown to significantly favor the occurrence of smDCs 
[18] in allogeneic transplantation models, and thus to induce Treg 
maturation and transplant-specific tolerance. AAT was also found to 
reduce the expression and presentation of IL-15 by DCs, correlating 
with reduced activation of NK cells by DCs, a standalone activation 
pathway distinct from the apparently unaffected property of AAT-
treated NK cells to directly kill tumor cells [19].

TADCs share some similarities with smDCs. Both have poor 
antigen-presentation capabilities and hence induce T cell anergy, Treg 
maturation and tumor-specific tolerance, and are therefore considered 
tumor-propagating cells [72,86,87]. Although TADCs share certain 
qualities with TAMs, they are differentiated primarily based on 
distribution; while TAMs are evenly distributed throughout the tumor, 
TADCs are primarily present in tumor periphery [72]. Indeed, deeper 
tumor infiltration by DCs correlates with a positive prognosis in certain 
tumors [88]. When considering the potential role of AAT in TADC-
associated immunological responses, it is important to bear in mind 
that although AAT may promote DC-induced immune tolerance, the 
few studies that attempted to address such a pathway by AAT were 
conducted in models drastically different from tumor development 
models (i.e., allograft transplantation or autoimmune disease models). 
The possibility that local conditions may markedly alter the delicate 
relationship between AAT and myeloid cell profiles is an example of 
an entity not yet addressed experimentally. A detailed examination of 
TADC profiles and functions in AAT-treated animals is thus strongly 
required.

Metastatic spread as a target for inhibition by AAT
Similar to primary tumor development, metastatic spread is a 

process that inexorably involves inhibition and re-purposing of the 
immune system [89]. Although specific inhibition of metastatic spread 
by AAT has yet to be examined, current knowledge regarding AAT 
activities in separate models suggests several potential stages inherent 
to metastatic spread of nearly all tumor types, in which AAT may reduce 
the metastatic burden; each such stage will be addressed separately.

Epithelial to mesenchymal transition (EMT)
The first stage of metastatic spread is the acquisition of 

mesenchymal characteristics by peripheral primary tumor cells, in a 
process generally termed EMT [90]. Although the myriad of changes 
which take place during EMT are beyond the scope of this review, 
we note that EMT is driven by certain cytokines that originate, to a 

large extent, from tumor-associated leukocytes, such as TAMs and 
tumor associated neutrophils (TANs, see illustration) [90]. Among 
the best characterized cytokines which participate in EMT are TNFα 
and TGFβ, both of which activate the NF-κB pathway [90]. The 
interaction between TNFα and tumors is intricate, and may elicit 
both pro- and anti-tumor responses, depending upon spatial and 
temporal parameters. As the main source of local TNFα is derived 
from tumor-associated leukocytes, the association between tumor-site 
inflammation and TNFα-induced EMT is powerful. TNFα blockade 
has proven effective in blocking inflammation-associated EMT, and 
TNFα signaling was found to be dispensable in early-stage tumors 
but critical in late-stage tumors [91]. AAT has been shown to inhibit 
the release of membrane-associated TNFα by the ADAM17 protease, 
significantly reducing free TNFα levels and resulting in reduced NF-κB 
pathway activation [92]. Unlike TNFα, TGFβ release is more variable 
and can be performed by tumor cells, tumor-associated leukocytes and 
TAFs [90]. TGFβ was found to be associated with EMT in a variety of 
tumor models [90]. Nonetheless, while AAT treatment was shown to 
elevate TGFβ expression in models of allogeneic transplantation [20], 
production of TGFβ by MCF-7 cells was blocked during treatment 
with AAT [40-42], resulting in reduced in vivo invasiveness. As AAT 
may also strongly block the cleavage of pro-TGFβ, a more thorough 
investigation of TGFβ-associated EMT responses and their relation to 
AAT therapy may prove highly informative.

ECM degradation and extravasation
In order for a successful metastatic migration of tumor cells from 

the primary tumor to the vasculature, tumor-surrounding ECM must 
be degraded by proteases [93], including MMPs [94-97] cathepsins [98] 
and elastase [99-101], which are mainly provided by TAMs and TANs 
[1]. The secretion and activation of proteases by TAMs is dependent 
upon reprograming of TAMs [90], which may be exerted by factors 
secreted by tumor cells or by tumor-periphery lymphocytes, such as 
IL-4/13–secreting Th2 cells and IL-17–secreting Th17 cells [102,103]. 
In an in vitro co-culture model, breast cancer cells were observed as 
secreting IL-6 and inducing the production of MMP-9 and MMP-2 
by monocytes [104]. All these various mechanisms share a common 
outcome: responding macrophages are skewed towards M2 profile 
characterized by a greater propensity for ECM-remodeling, which is 
highly conductive for tumor cell migration [90]. Direct AAT suicide-
inhibition of elastase, cathepsins and certain MMPs may constitute 
a viable mechanism for inhibition of metastatic spread. However, 
AAT may also exert its influence by direct inhibition of inflammatory 
proteases, such as the reduction of pro-MMP cleavage. The possible 
influence of AAT on TAM activation may also significantly alter the 
local protease environment by reducing the levels of IL-6, IL-1β and 
TNFα in the tumor periphery.

Survival in the circulation
The process of migration and extravasation is considered a 

preliminary step in metastatic spread, as in most types of tumors 
the rate of survival of extravasated metastatic cells is low (estimated 
to be less than 0.01% of disseminated cells) [90]. Under certain 
conditions, the survival of tumor cells in the circulation is increased by 
inflammatory factors released from the primary tumor environment, 
such as IL-6 and TNFα. A proposed mechanism for this phenomenon 
involves tumor cell engagement with macrophages in the tumor 
periphery, after which the cell agglomerate becomes blood borne and 
tumor cells receive myeloid-induced protection from lysis by NK cells 
and CD8+ T cells [105]. Circulating tumor cells have also been shown 
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to aggregate together with platelets, thus acquiring protection from NK 
cell recognition and lysis [106]. Platelet aggregation was found to be 
dependent upon expression of prothrombin and fibrinogen [106]. This 
mechanism correlates with reduced survivability of cancer patients 
with high platelet counts [107] and the reduced incidence of metastasis 
in animals and humans treated with anticoagulants [108]. In both 
mechanisms described, AAT may reduce the survivability of circulating 
tumor cells removed from the immune-regulatory environment of 
the primary tumor; lower levels of IL-6 and TNFα may reduce the 
propensity of TAMs to engage and extravasate with tumor cells, while 
the inhibition of thrombin by AAT (although inferior to antithrombin 
III) [109] may decrease platelet aggregation and permit intact anti-
tumor NK cell responses.

Pre-metastatic niche formation
Local inflammatory conditions provide important stimuli 

conductive to successful metastatic spread to target organs [70,110], as 

they drive local macrophages (such as alveolar macrophages) to acquire 
a TAM phenotype [71,102,111]. Several studies have demonstrated 
that such inflammatory conditions may be generated by factors 
secreted by the primary tumor, even prior to the process of tumor cell 
extravasation. In a model of breast cancer lung metastasis, primary 
tumor-bearing mice displayed elevated populations of immature 
CD11b+Gr1+ myeloid cells which localized to the lungs, inhibited local 
IFNγ levels, increased production of IL-6, monocyte chemoattractant 
protein-1 (MCP-1, also termed CCL2), IL-4 and IL-10, and secreted 
high levels of pre-MMP9, prior to arrival of disseminated tumor cells 
[112]. MCP-1 in particular is considered to be a highly metastatic 
chemokine as it facilitates tissue monocyte infiltration, setting the 
ground for formation of a pre-metastatic niche [113]. In this critical 
context, AAT is, again, poised as a protective agent in several respects: 
AAT significantly inhibits monocyte activation and MCP-1 release 
[114], while also inhibiting MMP9 activity (Figure 1).
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Figure 1. Suggested effects of AAT on tumor immunology based on evidence from allograft transplantation studies

Top, selected activities reported for AAT with regards to innate and adaptive immune cells and the paths that enable AAT to protect allografts. Bottom, compiled evidence from multiple 
reports regarding the effects of AAT on innate and adaptive immune cells in the context of advancing an anti-tumor molecular and cellular environment.
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Discussion
When considering particular pathways and cellular effects exerted 

by AAT, one may find both pro- and anti-tumor attributes. For example, 
that AAT is pro-angiogenic towards islet allografts [115] is in striking 
contrast to its anti-angiogenic effect on tumors [38]. Similarly, being 
anti-inflammatory, AAT is seemingly in favor of immune evasion, as 
expanding Tregs and suppressing macrophage responses would appear 
to impose; nonetheless, when one gathers data from multiple studies 
and adds-up the particular paths that they address experimentally, one 
can observe an overall suppression of tumor growth in the presence of 
AAT. Indeed, the few studies that did directly examine tumor growth 
and AAT therapy concluded that tumors fail to thrive in its presence. 

It is highly tempting to explore some clinically relevant functions 
of AAT by dissecting the phenotype of patients that suffer from its 
genetic deficiency, particularly in light of this condition being a one-
gene-disease. However, it is not a one-pathway disease, and its specific 
pathogenesis extends beyond the mere reduced levels of circulating 
AAT. In a recent review by Stockley RA [116], a timely and appropriate 
connecting line is drawn between the clinical entity of AAT deficiency 
(AATD), and newly explored clinically-relevant functions of AAT 
infusions. Outside the immediate association between AATD and the 
need for augmentation therapy to restore its circulating levels, one 
must consider the redundancy in functions identified as AAT-related 
that are readily present in the circulation of AATD patients; several 
other serine-protease inhibitors exhibit aspects that even overlap the 
anti-inflammatory attributes of AAT. Examples include antithrombin 
III, plasminogen activator inhibitor 1, β2-macroglobulin and protein 
C inhibitor. Liver cell function in AATD might be affected by the 
pathologic intracellular content of mutated AAT, and may thus be 
deficient in forming a fully functional inducible cassette of acute 
phase response products. Therefore, aspects addressed by therapeutic 
introduction of AAT in the context of an aberrant immune response 
are not necessarily lacking in the immune system of an AATD patient. 
The fact that our body generates excess AAT appropriately during 
infection and in the third trimester of pregnancy, at levels that are 
largely replicated by current exogenous AAT treatment protocols, 
better represents the context of AAT activities in the present review. 
A more detailed examination of AAT activities independent of an 
underlying genetic deficiency, particularly in the unique circumstances 
of tumor immunology, is therefore very much required.

Similar to the apparent limitation in interpreting AAT activities 
based on its genetic deficiency, it is important to also consider that 
elevated levels of AAT might represent a marker, rather than an active 
component within the multistep pathogenesis of any given disease. 
While clinical studies have pointed at elevated AAT serum levels in 
patients with advanced cancer of several types, in all cases AAT was 
studied as an acute-phase protein, such that appropriately rises during 
systemic inflammation. Information regarding the exact effects of 
AAT on tumor cells and on the critical junction between innate 
immune cell and tumor cell interactions is quite scarce and deserves 
further investigation. Taken together, AAT must be examined as an 
independent therapeutic agent in the context of tumor immunology, 
without excessive reference to either its deficiency nor its elevated 
levels and their accompanying pathological phenotype or etiology, 
respectfully. 

Current knowledge invariably portrays AAT as an 
immunomodulatory and anti-inflammatory agent. However, 
the models used to depict these attributes of AAT are primarily 

inflammatory or alloimmune responses; they do not attempt to 
approximate tumor-associated conditions or address tumor-specific 
cellular compositions. For example, one of the hallmarks of any 
tumor-associated environment is the chronic lack of sufficient tissue 
vascularization, which leads to hypoxic conditions and to the activation 
of hypoxia-associated pathways in macrophages and other tumor-
infiltrating myeloid cell populations. Indeed, AAT expression has been 
shown to be increased in macrophages during hypoxic conditions in 
a local manner. In addition, its role in regulating tumor-associated 
immunology should further be divided to satisfy a categorical relation 
to protease inhibition; some non-protease inhibition-related activities 
have been described for AAT. While protease inhibition is undoubtedly 
an integral part of tumor-related AAT activities, e.g., tissue remodeling 
and metastatic extravasation, the single study that examined AAT that 
lacks protease inhibition capabilities found that, in vivo, tumor growth 
inhibition by AAT remains intact. 

Taken together, collective studies in the past decade point to 
a potentially multifaceted immunological mechanism exerted by 
AAT, which should be further studied in order to elucidate the 
potential beneficial role of AAT in tumor immunology and to provide 
mechanistic evidence for consideration of AAT as a safe therapeutic for 
non–AAT-deficient individuals.
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