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Abstract
Evading apoptosis is a hallmark of cancer, and anti-apoptotic BCL-2 family proteins are frequently highly expressed in cancers. In cancer cells, aberrant DNA 
replication invokes replication-associated DNA damage signaling in cancer cells; however, DNA damage-induced apoptotic signals are masked by such apoptosis 
evasion systems. Therefore, it is considered that targeting of apoptosis is efficient for cancer cell-selective therapeutic methods. BCL-2 family proteins are critical 
regulators of mitochondrion-mediated apoptosis, and ‘BH3-only’ subfamily proteins induce apoptosis by binding to anti-apoptotic BCL-2 family proteins via their 
BH3 domain. BH3 mimetics are small molecules that mimic BH3-proteins by binding to anti-apoptotic BCL-2 family proteins. To date, more than 20 compounds 
have been identified, and their effects in cancer therapy have been analyzed. In this review, their efficacy in cancer chemotherapy will be discussed.

Introduction 
Mechanistic-based molecular-targeted therapies to treat human 

cancers have undergone rapid development [1]. For example, 
small molecules specifically blocking certain aspects of signaling 
pathways associated with tumor growth are widely utilized for cancer 
chemotherapy, such as cancer-associated tyrosine kinase inhibitors [2-
4]. Furthermore, drugs targeting chromatin modifiers, cancer-specific 
metabolic regulators, telomerase regulators and immune checkpoint 
regulators have also been investigated [5-8]. In addition to these 
approaches, targeting apoptosis regulators has been considered as an 
attractive option in cancer therapy.

BH3 mimetics are small compounds that antagonize anti-
apoptotic BCL-2 family proteins, resulting in apoptosis induction in 
cancer cells [9,10]. Recently, several BH3 mimetics were identified, 
and accumulating evidence has shown their efficacy in cancer therapy. 
However, at present, their effects are limited by their target specificity 
and adverse drug reactions. We present here the recent advances in 
BH3 mimetics research, and discuss their efficacy and limitations.

Regulation of apoptosis by BCL-2 family proteins
Apoptosis is a major barrier to cancer that must be circumvented, 

and evasion of apoptosis is a hallmark of cancer, causing resistance to 
cancer chemotherapy [1,11,12]. Therefore, therapeutic agents that can 
overcome the effect of evading apoptosis may be utilized for cancer 
therapy. BCL-2 family proteins are critical regulators of apoptosis 
and function immediately upstream of mitochondria. BCL-2 family 
proteins possess conserved BCL-2 homology (BH) domains and 
are classified into anti- and pro-apoptotic members that are further 
subdivided into ‘multidomain’ proteins, which contain four BH 
domains (BH1 to BH4), and ‘BH3-only’ proteins [10,13,14]. Among 
these proteins, the pro-apoptotic multidomain members BAX and 
BAK function as mitochondrial executioners and directly open pores 
in the mitochondrial outer membrane, resulting in the release of the 
apoptogenic factors such as cytochrome c and Smac/Diabro. Studies 
in mice lacking both Bax and Bak showed that Bax and Bak are 

essential inducers of mitochondrion-mediated apoptosis in response 
to various stimuli, including DNA damage. In contrast, anti-apoptotic 
multidomain members, Bcl-2, Bcl-XL and Mcl-1, inhibit the pore 
formation of Bax and Bak through direct binding [10,13,14]. BH3-only 
proteins are critical for initiating apoptosis, functioning immediately 
upstream of multidomain members, and activate Bax and Bak through 
direct and/or indirect activation [13,15]. Quadruple deficiency of Bim, 
Bid, Puma and Noxa abrogates apoptosis induced by various stimuli, 
suggesting the importance of these direct activator type BH3-only 
proteins in triggering Bax/Bak-mediated apoptosis induction [16]. In 
addition to their direct effect, BH3-only proteins also inactivate anti-
apoptotic multidomain proteins, resulting in indirect activation of Bax 
and Bak [15,16]. Among BH3-only proteins, BIM and PUMA appear 
to bind to all anti-apoptotic multidomain proteins with equal affinity, 
whereas the other members display differential affinity. Particularly, 
NOXA, an inducer of tumor suppressor p53-mediated apoptosis 
[17], shows a unique feature in that it does not bind to BCL-2, BCL-
XL or BCL-W but does bind to MCL-1 and A1 with high affinity [15]. 
Therefore, it is possible that differences in BH3 domain structure 
control altered apoptosis-induction pathways. 

BH3 mimetics and their action
The pro-apoptotic BH3 domain consists of an amphipathic α-helix 

and binds to the hydrophobic groove, which contains BH1, -3 and 
-4, of anti-apoptotic multidomain proteins, resulting in the release of 
sequestered pro-apoptotic proteins BAX, BAK, and the activator type 
BH3-only proteins [10,18]. Released BAX and BAK activate themselves 
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BH3 mimetics Target Targeting apoptosis in cancer chemotherapy Limitation in cancer therapy and other characteristics
ABT-737 [21] BCL-2, BCL-XL, 

BCL-W
ABT-737 is mainly active in hematological malignancies, but less 
active in solid tumors. Particularly, some small cell lung cancer 
(SCLC) cell lines are highly sensitive [40-43].

ABT-737 is not orally bioavailable, which can limit drug administration 
methods particularly in long-term therapy [44].

ABT-263 
(Navitoclax) [44]

BCL-2, BCL-XL, 
BCL-W

ABT-263 is mainly active in hematological malignancies but less 
active in solid tumors. ABT-263 shows limited activity against 
advanced and recurrent SCLC [45].

ABT-263 was highly bound with albumin and an increased albumin 
binding accounted for the differential sensitivity of CLL cells 
[46]. Inactivation of BCL-XL reduces platelet half-life and causes 
thrombocytopenia in a dose-dependent manner [47].

ABT-199 [37] BCL-2 ABT-199 efficiently induces apoptosis in BCL2-dependent 
hematological malignancies, without causing thrombocytopenia 
[37].

ABT-199 is less sensitivity in solid tumors compared with ABT-263 or 
ABT-737 [32-35].

WEHI-539 [48] BCL-XL WEHI-539 sensitizes colon cancer stem cells to chemotherapy [49]. Pharmacological inactivation of BCL-XL causes thrombocytopenia [47].
BXI-61, BXI-72 [50] BCL-XL Effects were investigated in lung cancer cell lines, and inhibition 

of tumor cell proliferation was demonstrated in vitro and in vivo in 
xenograft animal models [50].

GX15-070 
(Obatoclax) [51]

All of the anti-
apoptotic BCL-2 
family proteins

Because of its ability to bind MCL-1, obatoclax may be particularly 
promising for the treatment of solid tumors. Therefore, its efficacy 
was investigated in clinical trials for SCLC [52].

Early clinical trials with obatoclax have indicated neuronal toxicity [52]. 
Obatoclax added to topotecan did not exceed the response rate seen with 
topotecan alone in patients with relapsed SCLC following the platinum-
based therapy. Currently, there are no open clinical trials with obatoclax 
in solid tumors.

S1 [53] BCL-2, MCL-1 Anti-tumor activity of S1 was shown in a mouse liver carcinoma 
xenograft model [54].

Resistance to S1 has been reported in SCLC by the activation of the 
MAPK/ERK pathway and the subsequent phosphorylation of BCL-2 
[55]. S1 increases reactive oxygen species, resulting in initiation of 
endoplasmic reticulum (ER) stress [56]. S1-mediated death is in part 
because of autophagy through ER stress and disruption of Beclin 1/BCL-
2 interaction [57].

JY-1-106 [58] BCL-XL, MCL-1 JY-1-106 was able to suppress tumor growth in a lung cancer 
xenograft model [58].

Data on the specificity and toxicity of JY-1-106 have not yet been 
published [58].

Apogossypolone 
(ApoG2) [59]

BCL-2, MCL-1 ApoG2 inhibited the proliferation of nasopharyngeal carcinoma 
(NPC) cells in a dose-dependent manner [59,60].

ApoG2 inhibits the binding of BCL-2 to Beclin 1, inducing autophagy 
and radio-sensitizing NPC cells both in vitro and in vivo [61]. However, 
several studies have reported that autophagy attenuates apoptosis and 
promotes cell survival.

BI97C1 (sabutoclax) 
[62]

BCL-2, BCL-
XL, BCL-2A1, 
MCL-1

BI97C1 induce apoptosis in culture cells in a BAX/BAK- and 
caspase-9-dependent manner [63].

BI97C1 had little apoptotic effect on benign prostate tissue in 
transforming growth factor β receptor type II in stromal fibroblastic cells 
and wild-type mice. BI97C1 was able to block c-Met activation, a critical 
axis in PCa metastatic progression [64].

TW-37 [65] MCL-1, weekly 
BCL-2 and BCL-
XL

Effect has been demonstrated in prostate and pancreatic cancer cells 
[65].

TW-37 were more effective than ABT-263 and also resulted in BAX/
BAK- and caspase-9-dependent apoptosis [63]. However, such specificity 
was generally lost when TW-37 was used at high concentrations (>10 
µM), possibly because of off-target effects [63].

MIM1 [66] MCL-1 MIM1 induced apoptosis in a MCL-1-dependent leukemia cell line. MIM1 induced BAK-dependent apoptosis only at high concentrations 
(>10 µM) and failed to induce apoptosis in MCL-1-, BCL-2- and 
BCL-XL-dependent cell lines. Its potency may be limited and cell-type-
dependent [63].

MS1 (MCL-1-specific 
peptide) [67]

MCL-1 MS1 induced apoptosis in MCL-1-dependent triple-negative breast 
cancer cells [33]

Data on the specificity of MS1 have been published only at high 
concentrations (100 µM) in triple-negative breast cancer cells [33].

BH3I-1 and its 
structural derivatives 
[68,69]

MCL-1 N.D. Neither compound killed Jurkat cells, even at high concentrations 
(<30nM), as a single agent or in combination with ABT-737 [63].

UMI-77 [70] MCL-1 UMI-77 inhibits proliferation of pancreatic cancer cells and induces 
intrinsic apoptotic pathways [70].

Compounds 
from Takeda 
Pharmaceutical 
Company [71]

MCL-1, BCL-XL          
(MCL-1/BCL-XL 
dual inhibitor)

N.D.

University of 
Michigan Compounds 
[72]

MCL-1 This compound inhibited cell proliferation and activated caspase-3 
in a dose-dependent manner [72].

Marinopyrrole A 
(Maritoclax) [73,74]

MCL-1 Marinopyrrole A induces apoptosis in MCL-1-dependent but 
not BCL-2- and BCL-XL-dependent manners in leukemia and 
melanoma cells [73,74].

Marinopyrrole A fails to induce apoptosis of MCL-1-dependent cell lines. 
Its potency may be limited and cell type-dependent [75].

Compounds 
from Eutropics 
Pharmaceuticals [76]

MCL-1 and 
weekly BCL-XL

These compounds were found to induce dose-dependent cytochrome 
c release and antiproliferative activity against several MCL-1-
dependent cell lines [76].

AbbVie Compounds 
[77]

MCL-1 N.D.

Vanderbilt University 
Compounds [78]

MCL-1 N.D.

Table 1. BH3 mimetics and their action.



Nakajima W  (2016) BH3 mimetics: Their action and efficacy in cancer chemotherapy

 Volume 3(3): 437-441Integr Cancer Sci Therap, 2016      doi: 10.15761/ICST.1000184

and/or are activated by released BH3-only proteins to induce apoptosis, 
suggesting that BH3 peptides or small compounds structurally similar 
to the BH3 domain could be utilized as therapeutic agents against 
cancer.

In this context, a number of natural or synthetic small molecule 
inhibitors of anti-apoptotic BCL-2 family proteins were determined, but 
initially these compounds did not bind to the anti-apoptotic proteins 
with a high enough affinity and/or activated BAX and BAK to kill target 
cells efficiently [19,20]. Among these compounds, ABT-737 mimics the 
BH3-only proteins by binding to BCL-2, BCL-XL and BCL-W, but not 
MCL-1, and effectively induces mitochondrion-mediated apoptosis in 
several cancer cells, particularly MCL-1-suppressed cells [21,22]. 

Targeting apoptosis in cancer chemotherapy
In cancer cells, oncogenes induce aberrant DNA replication, 

which initiates replication-associated DNA-damage signaling, so-
called replicative stress [23]. Although DNA-damage signals induce 
apoptosis in p53-dependent and -independent manners [24], apoptosis 
is suppressed in cancer cells by various mechanisms including high 
expression of anti-apoptotic multidomain proteins [1,11]. Therefore, 
anticancer drugs that damage DNA enhance replicative stress, resulting 
in induction of apoptosis in cancer cells [25]. In addition, inhibition 
of cell proliferation by oncogenic kinase inhibitors induces BH3-
only proteins, especially BIM, in several cancer cells [9,26,27]. These 
results suggest the efficacy of agents that target apoptosis in cancer 
chemotherapy.

As shown in Table 1, a number of BH3 mimetics were identified and 
analyzed for their effect against cancer cells and tumors [28,29]. Among 
these compounds, ABT-263 (navitoclax), an orally available derivative 
of ABT-737, has been shown to be significantly effective in most CLL 
patients in clinical trials, and ABT-199 (venetoclax), also has shown to 
be effective in patients with relapsed or refractory CLL [13,30]. Other 
BH3 mimetics, GX15-070 (obatoclax), Bl-97C1 (sabutoclax), AT-101 
(gossypol) and derivatives of AT-101 have also been clinically tested, 
but their efficacy was only limited. Therefore, combination therapy 
with another anticancer drug(s) is now undergoing clinical studies 
[13,30]. 

Limitation of BH3 mimetics in cancer therapy
Extensive analyses of somatic copy-number alterations in human 

cancers revealed that MCL-1 and BCL-XL are enriched in many 
cancers [31]. Moreover, it has been demonstrated that the survival 
and proliferation of several cancer cell lines and experimental cancers 
depend on MCL-1 [32-35]. In contrast to the importance of MCL-1 
expression in cancers, clinically-effective BH3 mimetics ABT-263 and 
ABT-199 cannot affect MCL-1 (Table 1). Therefore, the discovery of 
BH3 mimetics that effectively inhibit MCL-1 is still expected at present. 

Another problem of BH3 mimetics in cancer chemotherapy is their 
side effects. Clinical trials with ABT-263 revealed that dose-dependent 
thrombocytopenia occurred in all patients [36]. Therefore, the effect 
of ABT-263 is limited because of its restricted safety dose [13,30]. In 
contrast, ABT-199 only inhibits BCL-2, but not BCL-XL, and does not 
reduce platelet number compared with ABT-263 [37]; however, it is 
possible that the efficacy of specific inhibitors of BCL-2 may be limited 
in lymphocyte and hematopoietic cell malignancies because of specific 
roles of BCL-2 in lymphoid homeostasis [38]. 

Conclusion
In contrast to their exhibited efficacies in cultured cells and 

experimental tumors, and their theoretically reasonable application 
for cancer therapy, BH3 mimetics have only showed limited clinical 
efficacy in human cancer, especially in hematological malignancies. 
This limited efficacy may be caused by restricted target specificity and 
cytotoxicity of currently-available BH3 mimetics. In this context, recent 
approaches and discovery of new MCL-1-selective BH3 mimetics may 
overcome such restricted target problems in combination with BCL-XL 
inhibitors, such as ABT-263 [39]. Moreover, it has been demonstrated 
that BH3 mimetics efficiently kill cancer cells in combination with 
various anti-cancer therapies, especially with oncogenic kinase 
inhibitors [9]. Analyses of these combination therapies are important 
for efficient utilization of BH3 mimetics at their safety dose. If future 
approaches can overcome these limited efficacies, BH3 mimetics will be 
a powerful tool for cancer chemotherapy. 
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