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Abstract
Macrophages are innate leukocytes ubiquitously present in nearly all tissues, and hold critical importance for tissue homeostasis, initiation and progression of 
immunological responses and tissue regeneration after injury. Two of the hallmarks of macrophages are variability and plasticity. Macrophages may polarize into 
either pro- or anti-inflammatory phenotypes (M1-like and M2-like macrophages, respectively), and various stimuli may shift their polarization across this spectrum. 
Typically, M1-like macrophages are involved in the onset and progression of autoimmune disorders, while M2-like macrophages have been demonstrated to effectively 
ameliorate such disorders by inducing the resolution of inflammatory responses and driving cellular proliferation and tissue regeneration. Many of the properties of 
M2-like macrophages are also characteristic of tumor-associated macrophages (TAMs), which are monocyte-derived cells that are subverted by tumors into potent 
pro-tumor agents capable of dampening anti-tumor cytotoxicity and facilitating tumor proliferation, angiogenesis and metastatic spread. Use of M2-polarizing 
immunotherapy for treatment of autoimmune disorders is a novel concept that holds promise for resolution of such disorders. However, concerns may be raised 
regarding the safety of such approaches as they may create tumor-permissive conditions. Here, we review current knowledge regarding the role of macrophages in 
autoimmunity and tumor immunology, and discuss the potential benefits and caveats of M2-polarizing therapies.

Abbreviations: T1D: Type 1 Diabetes, T2D: Type 2 Diabetes, IBD: 
Inflammatory Bowel Disease, MS: Multiple Sclerosis, TAM: Tumor-
Associated Macrophage, TGFβ: Tumor Growth Factor β, TNFα: 
Tumor Necrosis Factor α, VEGF: Vascular Endothelial Growth Factor, 
EGF: Epidermal Growth Factor: bFGF: Basic Fibroblast Growth Factor

Introduction
Macrophages comprise one of the central pillars of the immune 

system. While they represent a major component of the innate immune 
system, macrophages are uniquely poised as regulators of interaction 
between non-immune tissues and nearly all leukocyte compartments, 
both innate and adaptive [1-3]. Furthermore, tissue macrophage is 
intimately associated with the differentiation of numerous immune and 
non-immune cell populations, and may take part in nearly all forms of 
wound healing and tissue regeneration upon encountering appropriate 
conditions [4]. Such functions are primarily carried out in a paracrine 
fashion, by secretion of a wide variety of growth factors and cytokines, 
as well as nitric oxide (NO) and reactive oxygen species (ROS). 

One of the most intriguing aspects of macrophage biology is 
their high degree of heterogeneity and plasticity. This is evident 
by the multitude of macrophage-secreted factors [5,6] and by the 
ability of the cells to attain a site- and context-specific phenotype [7]. 
Macrophages are a source of both pro- and anti-inflammatory factors 
and populations of pro- and anti-inflammatory macrophages may be 
found in close proximity [8]. In addition to their paracrine activities, 
macrophage act as professional antigen presenting cells (pAPCs); 
plasticity is seen in this regard as well, as various macrophage subsets 
may hold a distinct antigen-presenting capacity [6]. The versatility of 
the cells is intentional; a pro-inflammatory profile would serve to, e.g., 
readily decontaminate an infected tissue while promoting local injury 
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and facilitating antigen-specific helper T cell localization. In contrast, 
an anti-inflammatory profile would most commonly promote tissue 
maintenance, wound resolution and tissue repair, a feat commonly 
exerted by resident tissue macrophages upon inflammatory resolution. 
While pro-inflammatory macrophages are often termed M1-like and 
anti-inflammatory macrophages are termed M2-like, polarization 
towards either M1 or M2 is not binary; M1 and M2 macrophages 
merely represent two extremes of a continuum of activation states.

The relationship between macrophages and tumor cells is intricate. 
Macrophages are capable of directly killing tumor cells by secretion 
of excessive levels of NO. Similarly, inflammatory macrophages are 
central in supporting cytotoxic T cell responses by presentation of 
tumor antigens to helper T cells and local secretion of Th1-supporting 
cytokines [4,6]. By encouraging helper T cells, the environment 
becomes well suited for cytotoxic T cells to undertake cytotoxic killing 
of tumor antigen-bearing tumor cells. However, one finds that tumors 
do contain macrophages, and that these tumor-associated macrophages 
(TAMs) are in fact central for tumor survival. 

TAMs may dampen anti-tumor immune activity, as well as secrete 
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tumor-promoting growth factors, drive angiogenesis and facilitate 
metastatic spread [3,5,6,9-13]. In a way, this renders TAMs somewhat 
similar to M2-like macrophages [5,6,9,14]. Most notably, they share the 
capacity to drive tissue remodeling and curb local deleterious immune 
reactions. Based on these virtues, clinical use of M2-polarizing therapies 
holds promise in the treatment of autoimmune and autoinflammatory 
disorders. However, concomitantly, concerns are raised as to potential 
pro-tumor effects inherent to such approaches. In the present review, 
we highlight differences and similarities between TAMs and M2-like 
macrophages in an attempt to optimize emerging novel therapeutic 
approaches for macrophage manipulation in immune disorders and in 
cancer.

Origins of macrophage populations as foundation to a 
rich local assortment 

The process of macrophage development remains a matter of 
debate. According to an early model, all macrophages that are present in 
an adult animal originate from bone marrow hematopoietic progenitor 
cells [15]. Such progenitor cells were previously thought to mature 
in an orderly manner into blood-borne monocytes, then infiltrate 
tissues and subsequently differentiate into mature macrophages [16]. 
However, recent evidence is suggestive of tissue resident macrophages 
originating from embryonic cells. These include yolk sac–derived 
macrophages in the liver, skin, spleen, brain and lungs [17-19], as well 
as chimeric macrophages in lungs and kidneys that display evidence 
for both yolk sac and hematopoietic stem cell origins [17-19]. These 
findings hold far-reaching implications. As will be further discussed 
in this review, significant differences exist in the polarization and 
activation of local resident macrophages and macrophages derived from 
tissue-infiltrating monocyte. These differences are particularly evident 
in pathologies associated with loss of immunological homeostasis, such 
as occurs in autoimmune disorders or might be an outcome of tumor 
evasion of the immune system.	

The recruitment of monocytes towards inflamed tissues involves 
both immune and non-immune cell populations. Distressed tissues, 
including tumors, induce the secretion of monocyte-recruiting 
chemokines such as RANTES (CCL5), SDF-1 (CXCL12) and 
fractalkine (CXC3L1) [20-22]. Growth factors may also contribute to 
monocyte attraction to the inflammatory tissue, such as transforming 
growth factor β(TGFβ), vascular endothelial growth factor (VEGF) 
and basic fibroblast growth factor (bFGF) [22-24]. The presence of a 
gradient of chemoattractants is critical for the expression of integrin 
molecules by endothelial cells adjacent to the inflammatory site; such 
integrins include VCAM-1, ICAM-1, E-selectin and p-selectin [25-27]. 
Sufficient expression of selectins on the surface of endothelial cells will 
promote binding, rolling and attachment of blood-borne leukocytes to 
the endothelial wall [28].

M1/M2 macrophage polarization 
While monocyte recruitment is a major component in tissue 

inflammatory responses, the manner in which infiltrating monocytes 
thereafter polarize may critically skew subsequent occurrences. Being 
a highly versatile cell type, macrophages may polarize to different 
inflammatory profiles according to local conditions. While the M1/M2 
nomenclature is widely used, this classification system represents the 
two extremes of observed macrophage profiles and does not exclude 
the presence of intermediary polarization states.

The M1-like pro-inflammatory polarization state is the result of 
activation by interferonγ (IFNγ) and LPS. M1-like macrophages are 

characterized by their inclination to secrete Th1-inducing cytokines, 
such as tumor necrosis factor α (TNFα), IL-12, IL-18 and IFNα/β, 
possession of an advanced antigen-presenting capacity and a robust 
expression of inducible nitric oxide synthase (iNOS), accompanied by 
release of large amounts of local NO [11-13,29-31]. Indeed, M1-like 
macrophages are capable of directly killing tumor cells by secretion 
of NO [32,33], as well as by presenting tumor antigens to CD4+ Th1 
cells and driving the activity of cytotoxic CD8+ T cells at the tumor 
site [34,35]. Accordingly, M1-like macrophages have been shown to 
inhibit tumor development and progression in vivo [32,36-39]. Thus, 
the ability of M1-like macrophages to directly kill tumor cells as well 
as their intimate association with anti-tumor Th1 responses, suggests 
that manipulation of tumor-infiltrating macrophage may comprise a 
unique opportunity in boosting anti-tumor immunity.

M2-like macrophages are typically involved in removal of tissue 
debris, tissue remodeling and repair. They may also take part in 
initiation of allergic reactions. This polarization state includes a wide 
variety of possible phenotypes. Therefore, a classification system 
has been established that divides M2-like macrophages into several 
subclasses: M2a-like polarization is induced by stimulation with IL-4 
and IL-13 and is associated with Th2-type allergic immune activation 
[5,40]. The M2b-like profile is observed in macrophages exposed 
to the combination of IL-1β and immune complexes (i.e., soluble 
antigen-binding antibodies), and is considered an immunoregulatory 
phenotype. Interestingly, M2b-like macrophages are characterized by 
simultaneous secretion of anti-inflammatory agents (predominantly 
IL-10) and inflammatory cytokines, such as TNFα and IL-6 [5,11]. 
M2c-like polarization is brought about by high concentrations of local 
IL-10; these macrophages secrete high levels of TGFβ, IL-10, various 
growth factors and interestingly, versican, an ECM proteoglycan that 
interacts with cells by binding to non-integrin and integrin receptors, 
and α1-antitrypsin, an immunomodulatory acute phase reactant that 
promotes wound healing [3,5,11]. These cells are considered anti-
inflammatory and are often associated with the phase of inflammatory 
resolution, concomitant with wound healing and tissue regeneration 
[3,5,11].

The three subclasses of M2-like macrophages share certain 
properties, such as expression of IL-10, reduced expression of co-
stimulatory molecules (such as CD80/86 and CD40) and limited 
antigen-presenting capacity [41]. However, it is apparent that they are 
differentiated by virtue of separate secretory profiles and by order of 
temporal appearance along the course of an inflammatory reaction 
[42]. Significantly, numerous other activation phenotypes have 
been described for macrophages beyond the three established M2-
like polarization states; it is increasingly apparent that macrophage 
polarization is variable in separate tissues and in the presence of 
distinct conditions. 

Macrophage polarization within tissues susceptible to 
autoimmunity 

For scope consideration, we will hereby explore the role of 
macrophages in autoimmune settings by collecting evidence from 
three autoimmune and autoinflammatory pathologies: type 1 diabetes 
(T1D), inflammatory bowel disease (IBD) and multiple sclerosis (MS).

Macrophages are dangerous but essential inhabitants of 
the endocrine pancreatic islet 

While insulin-secreting β cells comprise the majority of pancreatic 
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islet cells, regulation of islet development, function and physiological 
glucose homeostasis is primarily steered by non-β cells [43], including 
intra-islet resident macrophages. For example, an agitated macrophage 
might spread inflammatory signals in its immediate vicinity, effectively 
shutting down insulin release and promoting local insulin resistance, 
as exercised by, e.g., TNFα [44]. Intra-islet macrophages have been 
depicted throughout embryonic development and adult life [45]. In a 
study that examined mice with a mutation in the gene for granulocyte-
macrophage colony stimulating factor (GM-CSF) (op/op mice [46]) 
whereby the animals lack macrophages in pancreatic islets and most 
other peripheral tissues, animals display a significantly diminished β 
cell mass [46]. Consistent with such an unexpected role for resident 
islet macrophages, Calderon et al. have established that steady state 
islet macrophages display M1-like pro-inflammatory polarization 
properties [44]. Interestingly, when macrophage depletion was followed 
by introduction of naïve bone marrow cells, donor-derived islet-
infiltrating monocytes rapidly acquired this very same inflammatory 
polarization [44]. Both these studies depict a critical role for islet 
resident macrophages during steady state conditions.

Dysregulation of intra-islet immune cell compartments and 
the emergence of chronic inflammatory conditions within the islets 
are common characteristics of both T1D and T2D. Nonetheless, 
significant immunological differences separate the two syndromes: 
autoimmune T1D is categorically associated with the mounting 
of serum autoantibodies specific to β cell antigens [47] and with 
autoreactive CD8+ cytotoxic T cell responses directed against β cells 
[48,49], two entities that are not included in the clinical definition of 
T2D. However, macrophages appear to be a critical component of 
both syndromes: M1-like polarization is intimately associated with 
promotion of peripheral insulin resistance, islet inflammation and 
loss of β cell mass [50,51]. Accordingly, adoptive transfer of M2-like 
macrophages was found to prevent the onset of autoimmune diabetes 
in the NOD mouse model [52]. Similarly, in models of T2D, ablation 
[53] and depletion [54,55] of macrophages reduced β cell loss and 
induced improved glucose reactivity. 

The role of islet resident macrophages extends beyond the 
immunological context, as macrophages have been found to be 
indispensable for β cell proliferation elicited by the β cell–toxic agent, 
STZ, in vivo [56-58]. In a seminal study, the sustained induction 
of inflammatory conditions in the pancreas by partial bile duct 
ligation (pBDL) was shown to promote M2-like polarization of 
local macrophages and to facilitate macrophage-dependent β cell 
proliferation through secretion of TGFβ and epidermal growth factor 
(EGF) [56]. This study effectively demonstrates that while depletion 
of M1-like pro-inflammatory macrophages may assist in reduction of 
short-term damage and loss of β cell mass, it might not be an ideal 
approach to deplete islets from macrophages altogether; properly 
activated M2-like macrophages seem to be effective drivers of β cell 
proliferation upon local injury, and may thus restore functional 
pancreatic islets to the diabetic patients. 

Gastrointestinal tract macrophages are posted at a 
chronically hostile border

The gastrointestinal (GI) tract has a steady-state population of 
resident macrophages that may be divided into discrete populations 
of pro-inflammatory and anti-inflammatory (regulatory) macrophages 
[59]. The heterogeneity of GI tract macrophage populations is thought 
to provide a 'safety valve', ensuring that the status quo of a healthy tissue 
is maintained while an uninterrupted capacity to mount anti-bacterial 

activities is present on call [59]. It is perhaps for this reason that 
intestinal macrophages constitutively express the immunoregulatory 
cytokine, IL-10 [60,61], and do not readily respond to bacterial 
stimuli with pro-inflammatory cytokine production [62]. This form of 
immune tolerance may, however, shift rapidly during acute GI tract 
infection or mucosal degradation, during which an intense infiltrate 
of inflammatory macrophages is observed, along with significantly 
increased secretion of inflammatory cytokines, as well as NO and 
ROS [63-66]. It remains unclear whether the rapid appearance of 
inflammatory macrophages during acute GI tract infection is brought 
about by infiltration of inflammatory monocytes from the circulation, 
or rather by polarization of pre-existing resident macrophages. 

Intended to readily eradicate invasive bacteria [62,67-69], the 
inflamed GI tract also plays a key role in the onset and progression of 
various forms of IBD. IBD is characterized by the presence of chronic 
inflammatory conditions in the GI tract, which lead to degeneration 
of mucosal barriers and the replacement of functional intestinal tissue 
with non-functional fibrous tissue. Innate leukocytes, and in particular 
macrophages, are thought to hold a central role in this pathology 
[70-72]. Treatment of severe combined immunodeficient (SCID) 
mice with dextran sodium sulfate (DSS) results in the onset of colitis 
[73], demonstrating the central role of innate leukocytes rather than 
adaptive leukocytes in IBD. Furthermore, while IL-10 KO animals 
develop colitis without the need for an exogenous trigger, such as DSS, 
depletion of phagosomes effectively ameliorates colitis [74], as does 
blockade of monocyte recruitment in a colitis model [75]. 

While these studies effectively demonstrate the importance of M1-
like pro-inflammatory macrophages for disease onset, it is important to 
note that M2-like macrophages have been shown to exercise protective 
properties in colitis models [76-78]. Studies employing adoptive 
transfer of M2-like polarized macrophages [79,80], as well as M2-
polarizing agents [81,82] or agents that inhibit M1-polarization [83] 
have revealed a capacity of M2-like macrophages to diminish IBD 
severity and to promote intestinal wound healing [84].  

Macrophages poised between injury and recovery in the 
central nervous system

MS is thoroughly different from IBD. It involves sterile 
inflammation and is not characterized by the formation of fibrotic 
tissue, and furthermore involves the prototypical loss of myelin and 
degradation of axon functions in the central nervous system (CNS) 
[85]. While MS was long thought to be induced by the activity of 
autoreactive T cells, increasing appreciation is being afforded to the 
intricate role of macrophages in this pathology. 

Unlike in the case of pancreatic islets or the GI tract, the CNS 
does not have a population of resident macrophages [86,87]. Rather, 
CNS-associated inflammation induces the recruitment of circulating 
monocytes which then differentiate into macrophages and act to 
remove cellular debris and to secrete cytokines and growth factors. 
The high degree of variability in macrophage functions in MS is well 
documented. Studies have demonstrated disease-facilitation by pro-
inflammatory M1-like macrophages [88,89], and amelioration of 
symptoms by depletion of macrophages [90]. However, evidence also 
points to a clear tissue-regenerative role for macrophages present in 
the CNS [91]. Studies employing macrophage transplantation to a 
neuronal lesion site [86,92] demonstrated superior recovery from 
neuronal damage, while mice that lack the CCR2 chemokine receptor, 
involved in monocyte recruitment to neuronal injury sites, displayed 
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accelerated loss of neuronal functions in a model of Alzheimer's disease 
[93,94]. 

Experimental autoimmune encephalomyelitis (EAE) is a 
commonly-used animal model of MS, which is characterized by 
inflammation-induced neuronal degeneration of a relapsing-
remitting nature [85]. A pathological M1/M2 ratio in favor of M1-like 
macrophages has been shown to promote relapsing EAE while adoptive 
transfer of M2-like macrophages was shown to support remission and 
neuronal recovery [95]. 

Macrophage polarization in tumors 
Tumors benefit from promoting TAM polarization

Inflammation has long been considered a prerequisite for tumor 
development, and monocyte-derived cells (including macrophages) 
predominate as the major leukocyte subtype found within the majority 
of tumors [9,11,96]. Yet the plasticity of macrophages allows them to 
readily polarize to either pro- or anti-inflammatory profiles. Thus, it 
is intriguing to find that the inflammatory axis in established tumors 
is typically accompanied by macrophages that display M2-like 
characteristics, such as poor antigen-presenting capabilities, as well as 
abundant release of IL-10, TGFβ, VEGF and EGF, and low expression 
of IL-12 and IFNα/β [6,9,11,30]. Much like one would find in resident 
macrophages scattered within steady-state tissues. Yet unlike tissue-
resident macrophages, TAMs are thought to originate in inflammatory 
monocytes that infiltrate tumor sites and subsequently undergo 
maturation to macrophages [97-99]. 

The precise factors that govern TAM differentiation have yet to 
be fully elucidated, as each tumor is characterized by unique physical 
conditions and cytokine milieu. However, certain common features 
may be suggested. Hypoxic conditions are a nearly universal feature 
of primary tumors, and hypoxia-induced stabilization of hypoxia-
inducible factor 1α (HIF1α) and HIF2α in macrophages leads to 
expression of genes associated with M2-like polarization [100]. Indeed, 
HIF1α and HIF2α are commonly present in TAMs within various 
types of tumors. Interestingly, tumor cell–derived lactic acid was found 
to mediate HIF1α-associated VEGF expression and the subsequent 
polarization of TAMs towards the M2-like phenotype [101]. Cytokines 
derived from both tumor cells and local non-monocyte immune 
compartments are also central in macrophage differentiation. IL-10 
and TGFβ released from tumor cells and regulatory T cells (Tregs) are 
powerful drivers of TAM polarization [5,9], as is colony stimulating 
factor-1 (CSF-1) [30,35]. Blockade of the CSF-1 receptor attenuates 
tumor growth and enhances CD8+ T cell infiltration [102,103]. It 
appears that tumors utilize diverse mechanisms to dampen Th1-type 
cytotoxic responses, in part by diverting T cells towards a Th2-type 
response; Th2 cells secrete large amounts of IL-4 and IL-13 that promote 
M2-like polarization of TAMs [9]. In support of this concept, studies 
have shown that in vivo treatment with IFNγ [104] or augmentation of 
the NF-κB pathway [105] may reverse M2-like polarization of TAMs 
towards M1-like characteristics. 

TAMs can promote both tumor growth and tumor spread 

TAMs promote a tumor-favorable environment. These unique 
macrophages have been shown to exert broad activities such as 
dampening of anti-tumor cytotoxic responses, promotion of tumor 
cell proliferation and facilitation of angiogenesis, as well as recruitment 
of naïve blood-borne monocytes to the tumor site [9,12,13,106,107]. 
Yet, TAMs may incorporate elements characteristic of both M1-like 
and M2-like macrophages. 

While expression of iNOS and secretion of NO is primarily a 
feature of M1-like macrophages, TAMs have been shown to express 
iNOS, albeit at a relatively low level [108]. While NO is toxic to tumor 
cells at excessive concentrations, low but persistent levels of NO 
may benefit tumor development by augmenting genetic instability, 
thus aiding tumor cells in overwhelming the meticulous regulation 
of cellular proliferation [109]. Expression of iNOS by TAMs may 
therefore be regarded as the subversion, or 'hijacking' of a classic M1-
like tool towards pro-tumor purposes. 

Secretion of growth factors is among the most important tumor-
promoting functions of TAMs. Growth factors commonly secreted 
by TAMs include VEGF, EGF, TGFβ and bFGF [110]. While growth 
factor secretion is an integral part of macrophage functions in wound 
healing, sustained exposure of tissues to growth factors may promote 
proliferation of tumor cells and tumor-associated cell populations 
[11,30,107]. Aside from VEGF, a TAM-derived angiogenesis factor 
with obvious implication on tumor progression, growth factors have 
been shown to induce the proliferation of epithelial cells bearing 
cancer-associated mutations [111]; TAM-derived TGFβ was shown 
to induce epithelial-to-mesenchymal transition (EMT) [112], as well 
as persistent activation of cancer-associated fibroblasts, which then 
promote tissue remodeling and drive tumor cell proliferation [113]. 

Metastatic spread is also affected by TAMs. A unique paracrine 
loop appears to form between TAMs and tumor cells in the migration 
process necessary for metastatic spread. Specifically, relocation of 
tumor cells from tissues towards blood vessels is dependent on EGF 
signaling and is blocked by inhibition of EGF receptor signaling 
[114]. The stimulation of TAMs and tumor cells with CSF-1 and EGF, 
respectively, induces a 'lock-step' migration process in which the two 
cellular populations promote migration through tissue regions rich in 
extracellular matrix (ECM] [115]. In parallel, paracrine co-stimulation 
of tumor cells and TAMs enhances ECM-remodeling capacities of both 
cellular types [116]. 

TAMs are capable of suppressing anti-tumor immune 
responses

TAMs have been shown to curb anti-cancer immune responses 
through a variety of mechanisms. These include secretion of soluble 
immunosuppressive agents, such as IL-10, TGFβ and IL-1 receptor 
antagonist (IL-1Ra) [6,12,117], as well as expression of contact-
dependent immunosuppressive receptors, such as PD-L1 [118] and 
B7-H4 [119]. TAMs utilize such mechanisms along with secretion of 
specific chemokines in order to dampen cytotoxic CD8+ T cell activity, 
as well as induce the differentiation of CD4+ T cells into IL-4–producing 
Th2 cells and drive the recruitment and differentiation of regulatory 
T cells [41]. Importantly, chemokines associated with the M1-like 
phenotype such as CXCL9 and CXCL10, or M2-like phenotypes 
such as CCL17 and CCL22 display reciprocal behavior: M2-inducing 
signals inhibit the expression of chemokines associated with M1-like 
activation, and vice-versa [41].

TAMs also exert metabolic control over leukocyte activation at 
the tumor site. A potent suppressor of adaptive T cell responses, the 
tryptophan-metabolizing enzyme indolamine 2,3-dioxygenase (IDO) 
is regularly expressed by TAMs [120]. Similarly, nicotinamide adenine 
dinucleotide (NAD), another end-product of tryptophan metabolism, 
is a regulator of IL-6 and TNFα in monocytes [121]. Iron metabolism 
is a major component of immunoregulation; M1-like macrophages 
express high levels of Ferritin and low levels of Ferroportin and CD163, 
in effect sequestering iron and limiting local bacterial growth [122]. In 
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contrast, M2-like macrophages express high levels of Ferroportin and 
CD163 and low levels of Ferritin, and thereby deposit extracellular 
iron that drives immunoregulation, tissue re-modeling and cellular 
proliferation [122].

Discussion
The importance of M2-like macrophages in the regulation of 

immune and inflammatory responses is widely accepted, as is their 
potential to ameliorate a wide range of autoimmune disorders. 
Further necessitating an evaluation of the clinical use of M2-polarizing 
agents is the alarming rise in the incidence of autoimmune and 
autoinflammatory syndromes, such as T1D, T2D, the various forms 
of IBD and MS. Successful skewing of macrophages in the affected 
tissue from M1-like pro-inflammatory cells, known for their capacity 
to decontaminate tissues at the cost of widespread tissue injury, to 
M2-like tissue-protective cells, may not only halt the progression of 
autoimmune activation, but also effectively drive the regeneration of 
disrupted tissues. The capability of M2-like macrophages to induce 
the proliferation of islet β cells [56] exemplifies the advantage of M2-
polarizing treatments over total macrophage depletion. However, M2-
like polarization does not represent a discreet activation state; several 
separate M2-like polarization profiles may be induced [5]. Therefore, 
clinical manipulation of macrophage polarization must explicitly 
consider local tissue conditions. In addition, the high degree of 
similarity between TAMs and M2-like macrophages, particularly M2c 
macrophages, raises a major point of contention. M2-like macrophage 
potently drive cellular proliferation and angiogenesis and in many 
cases exercise immunoregulation over innate and adaptive leukocyte 
compartments [5]; these properties are also found in TAM populations. 
To date, no studies have examined models suitable for the elucidation 
of such an important question. Furthermore, the polarization of 
macrophages to the M2-like profile does not in itself necessarily 
represent a tumor-conductive factor. While the polarization of TAMs 
is thought to be induced by factors secreted by tumor cells, TAMs in 
and of themselves do not necessarily induce the de novo emergence of 
tumor cells. It is presently unknown whether adoptive transfer of TAMs 
may promote tumor development. Yet, any potential use of sustained 
immunotherapy for treatment of autoimmune pathologies such as T1D 
or MS, must therefore be preceded by detailed examination of systemic 
influences and, in particular, address the possible reduction in immune 
surveillance. Also, sustained immunosuppression correlates with 
severely reduced wound healing and tissue regeneration and, in the 
case of T1D, most clinical approaches centered on immunosuppression 
have proven largely ineffective [123,124].

It is currently unknown whether TAMs, as potent effectors in the 
progression of tumors, may ameliorate autoimmune disorders. The 
adoptive transfer of purified TAMs from tumor-bearing animals for the 
treatment of autoimmune disorders in non–tumor-bearing animals is 
a novel concept that may offer great insights into the subtle differences 
between M2-like macrophages and TAMs. Yet when one considers the 
negative effects of immunosuppression over the benefit of tissue regen-
eration, it is evident that sustained treatment of autoimmune disorders 
with immunosuppressive regimens might preclude long-term healing 
and resolution. The potential use of immunotherapeutic agents aimed 
at reversing macrophage polarization in affected tissues is therefore 
an appealing possibility, with the potential for successfully resolving 
inflammatory conditions, curbing autoimmune responses and driving 
successful tissue regeneration towards regain of function. However, 

further studies are required in order to fully explore the immunological 
and physiological implications of the novel utilization of macrophage 
polarization strategies.
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