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Abstract
TET enzymes are responsible for catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), during the process of active DNA 
demethylation. These enzymes are differentially expressed in several tissues during development and can regulate several conserved signaling pathways, such as 
Wingless (WNT), Notch, Sonic Hedgehog (SHH) and Transforming Growth Factor Beta (TGF-β). Low expression of TET genes and the consequent reduction 
of 5hmC levels have been commonly reported in tumors of different origins and, in most cases, associated with poor prognosis. On this basis, we aimed to compile 
information about the canonical action of TET enzymes on the above signaling pathways during development, as well as the alterations characterized in different 
cancer cells. The presence of TETs is fundamental for normal embryonic development and their deletion in animal models has shown to delay cell differentiation 
and result in dysregulated expression of genes involved in signaling pathways. Consequently, the absence of TETs results in central nervous system defects and 
retinal deformity.  In cancer, low expression of TETs induces activation of the WNT, TGF-β and NOTCH pathways, either directly or indirectly. Depletion in Tet 
activity inhibits tumorigenic processes, such as cell proliferation and epithelial-mesenchymal transition (EMT). The prospect of TET pharmacological or molecular 
manipulation might have global effects that should be considered for future therapeutic intervention.
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Ten-eleven translocation (mouse), 5mC: 5-mehtylcytosine, 5hmC: 
5-hydroxymethylcytosine, WNT: Wingless, SHH: Sonic Hedgehog, 
TGF-β: Transforming Growth Factor Beta, EMT: epithelial-mesenchy-
mal transition, DSHB: double-stranded β-helix domain, IDAX: Dvl-
binding protein, TDG: thymine DNA glycosylase, BER: base excision 
repair, H3K4me3: Tri methylation of lysine 4 in the histone 3, CNS: 
central nervous system, DC: destruction complex, APC:  Apoptosis 
Poliposis Coli, GSK3β: Glycogen synthase kinase-3 Beta, CK1α/γ: ca-
sein kinase alfa/gama, CKα/o: casein kinase alfa/omega, FZD:  Friz-
zled, LRP5/6: lipoprotein receptor-related protein5/6, TCF/LEF: T-cell 
factor/lymphoid enhancer factor, CRC: colorectal cancer, CRISPR: 
Clustered Regularly Interspaced Short Palindromic Repeats), C-myc: 
cancer – Myelocytomatosis, Sfrp: secreted frizzled-related protein , 
DKK: Dickkopf-related protein, HH: Hedgehog, IHH: Indian Hedge-
hog, DHH: Desert Hedgehog, PTCH1: Patched-1, SMO: Smothened, 
GLI: glioma-associated oncogene, SUFU: suppressor of Fused, BCL2: 
B-cell lymphoma 2, ANG1/2: angiopoietin, SNAIL: Zinc finger pro-
tein SNAI1, Sox2: SRY-box 2, ChIP:  chromatin immunoprecipitation, 
Hhip: hedgehog interacting protein, Pax1/9: Paired box 1, Ccnd2: Cy-
clin D2, BMPs: bone morphogenetic proteins, GDF: growth and dif-
ferentiation factors, SMAD: SMAD family member, FOXH1: Forkhead 
box protein H1, MPKs: mitogen-activated protein kinase, CDKs: cy-
clin dependent kinases, Smurf: SMAD ubiquitination regulatory factor, 
DNMT: DNA methyltransferase, PEN2: presenilin enhancer 2, APH1: 
Homolog B, Gamma-Secretase Subunit, NICD: Notch intracellular do-
main, RBP-J: recombination signal sequence-binding protein J, Hes-1: 
Hes Family BHLH Transcription Factor 1, Jag (1,2): Jagged DLL (1/3): 
Delta-like, HES5: Hes Family BHLH Transcription Factor 5, DNER: 

Delta/Notch Like EGF Repeat Containing, GFAP: Glial Fibrillary Acid-
ic Protein, AXL1: AXL receptor tyrosine kinase.

Introduction
Hydroxymethylation is an epigenetic mechanism with a crucial role 

during development of mammals.  5-hydroxymethylcytosine (5hmC) 
influences chromatin structure and genomic function [1]. High 
levels of 5hmC are present in regulatory regions and along expressed 
genes and are associated with the recruitment of the transcriptional 
machinery. Conversion of 5mC to 5hmC is catalyzed by TET (Ten 
Eleven Translocation) enzymes: TET1, TET2 and TET3, which 
constitute a family of 2-oxoglutarate-dependent dioxygenase and 
iron (II). These proteins display a catalytic region in their C-terminal, 
with methylcytosine dioxygenase activity, composed by a conserved 
cysteine (Cys-rich) rich domain; and a double-stranded β-helix domain 
(DSHB), which interacts with 2-oxoglutarate and iron (II). At the 
N-terminal region, TET1 and TET3 show a CXXC domain, which 
binds to unmodified cytosines [1]. Conversely, as a consequence of a 
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During the initial phases of embryonic development, TET 
enzymes are differentially expressed in several tissues, and have a 
specific expression profiles for each cell type, since the beginning of 
gastrulation [7-11]. Expression levels of TET enzymes (TET1 and 
TET2) in embryonic stem cells of animal models showed that these 
enzymes play important roles in tissue control and maintenance 
at embryonic level [12,13]. During central nervous system (CNS) 
development, these enzymes take part in several important biological 
processes, influencing oligodendrocyte maturation and differentiation, 
and myelination of cells [14].

TET1 is highly expressed in early blastocyst cells, and it is crucial in 
regulating the proliferation of neural progenitor cells [15]. Therefore, 

chromosome inversion during evolution, this domain is not present 
in TET2; the CXXC was separated and gave origin to the IDAX gene, 
which acts as its negative regulator (Figure 1) [2].

During the process of active DNA demethylation, TET 
enzymes oxidize the methyl group to 5hmC, 5-formylcytosine 
and 5-carboxylcytosine (Figure 2). The bases are then recognized 
and excised by the enzyme thymine DNA glycosylase (TDG) and 
substituted by an unmodified cytosine by base excision repair (BER) 
[3-5]. Independent of their catalytic activity, TET2 and TET3 are 
also associated with chromatin remodeling and H3K4me3 mark (Tri 
methylation of lysine 4 in histone 3), a histone mark indicative of 
transcriptionally permissive chromatin states [6].

Figure 1. TETs showed a catalytic region in their C-terminal, with methylcytosine dioxygenase activity, composed by a conserved domain rich in cysteine (Cys-rich); and a double-stranded 
β-helix domain (DSHB), which interacts with 2OG and Fe (II). At the N-terminal region, TET1 and TET3 show a CXXC domain, which binds to unmodified cytosine; Conversely, as 
a consequence of a chromosome inversion during evolution, this domain is not present in TET2; the CXXC was separated and gave origin to the IDAX gene, which acts as its negative 
regulator

Figure 2. TET enzymes in the process of DNA demethylation. TET1/2/3 oxidize the methyl group into 5hmC, 5-formylcytosine and 5-carboxylcytosine. These bases are recognized and 
excised by the enzyme thymine DNA glycosylase (TDG) and substituted by an unmodified cytosine by base excision repair pathway (BER)
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changes in its function can promote phenotype anomalies at the 
hippocampus and decreasing neurogenesis by transcription repression 
[15]. TET2 has been identified as responsible for maintaining 
hematopoietic stem cells and establishing DNA hypomethylation 
during neuronal tissues development. Likewise, TET3 is essential 
for the maintenance of neuronal progenitor cells in neocortical 
development [12,16-18].

Furthermore, TET1 and TET2 perform important functions during 
postnatal development. TET1 forms repressive complexes binding to 
target gene promoters, assuming an important role in transcriptional 
activation of tissues in development; [13] while the absence of TET2 
may impair the maintenance of hematopoietic stem cells contributing 
to the development of acute myelomonocytic leukemia [12,19]. 
Therefore, TET enzymes activities are important in several stages of cell 
differentiation in tissue development, and any dysregulation, can lead 
to complications and loss of specific functions in each cellular context 
[20-22]. 

In cancer, decreased expression of TET genes and the consequent 
reduction of 5hmC levels have been frequently reported in tumors of 
different origins, and related to a poor prognosis [23-31]. Low 5hmC 
and 5mC levels are associated with the accumulation of methylation 
in specific promoter regions of tumor suppressor genes related to 
cancer progression [25,32,33]. Moreover, decreased 5hmC levels are 
associated with increased genomic instability [34]. 

A recent study demonstrated a similarity between the DNA 
methylation patterns of TET-deficient cells types and the profile of 
cancer cells, suggesting that local hypermethylation in euchromatin 
and DNA hypomethylation in heterochromatin can be associated with 
oncogenic transformation [35].

Manipulation of TET expression during embryonic development 
and in cancer cell lines has demonstrated the relevance of these genes 
in the control of conserved signaling pathways, such as Wingless 
(WNT), Notch, Sonic Hedgehog (SHH) and Transforming Growth 
Factor Beta (TGF-β), whose dysregulation is generally associated with 
tumor progression. In this review, we propose to analyze the action of 
TET enzymes in these signaling pathways in development, as well as 
the alterations displayed in cancer cells.

TETS and signaling pathways in embryonic development 
and cancer
TETs and WNT pathway

The WNT canonical signaling causes the accumulation of β-catenin 
in the cytoplasm and its eventual translocation into the nucleus to 
act as a transcriptional coactivator of transcription factors. When 
inactive, β-Catenin stability is regulated by a destruction complex (DC) 
[36,37]. Consisting of AXIN, the tumor suppressor Adenomatous 
Polyposis Coli (APC) and two activated kinases, the GSK3β (Glycogen 
Synthase Kinase 3 Beta) and CK1α/γ (Casein Kinase 1 Alpha/
Gama). This complex, leads to the phosphorylation of β-Catenin, by 
CK1α/γ and GSK3β, and consequent proteasomal degradation. WNT 
ligands binding to receptor co-operators of Frizzled (FZD) and the 
lipoprotein receptor-related protein5/6 (LRP5/6) [38] and leads to 
their dimerization and the phosphorylation of the intracellular tail of 
LRP5/6 by GSK3β at serine 9. Consequently, the DC is abrogated and 
β-Catenin accumulates in the cytoplasm and nucleus where it binds 
to TCF/LEF (T-cell factor/lymphoid enhancer factor) and activates 
the transcription of WNT target genes: AXIN2 and  leucine rich repeat 

containing G protein-coupled receptor 5 (LGR5), the key effectors of 
WNT signaling [39,40].

In tissue development, this pathway is constitutively activated 
until it reaches the precise stage and differentiation [41]. However, 
inactivating events on the DC or mutations in phosphorylation 
coding sites of genes belonging to WNT core components, lead to 
several pathologies, including cancer [41]. In recent years, WNT 
pathway components have frequently been described as over- or 
underexpressed in different human cancers playing key roles in tumor 
initiation, tumor growth, cell senescence, cell death, and metastasis 
[42]. In medulloblastomas, for example, the WNT canonical pathway is 
often activated and patients are categorized within the WNT molecular 
subgroup; and are assigned with a good prognosis [43]. Likewise, in 
breast and colon carcinomas, high levels of nuclear β-Catenin are 
usually considered predictors of increased WNT signaling activity and 
correlate with poor prognosis [44,45]. 

Alternatively, loss of APC is a driver event in colorectal cancer 
(CRC) and is associated with poor prognosis. Notably, tumor 
phenotype is reversed to normal as demonstrated by APC knockout 
in vivo models of CRC [46,47]. In other tumors, i.e. melanoma, the 
WNT pathway seems delays senescence [48], and mutations that 
disrupt the phosphorylation and degradation of β-Catenin are frequent 
in hepatocellular carcinoma and ovarian cancer, whereas mutations 
in AXIN1 are common in colorectal tumors, most of which serve as 
prognostic indicators [49,50]. 

The investigation of Tet1 deletions in mice also showed that this 
gene is required to maintain the morphology of epithelial cells and 
regulate the WNT pathway. Tet1 absence resulted in increased 5mC 
levels and decreased 5hmC levels at the promoter regions of  Axin2, 
C-Myc and Sox-9 genes in intestinal stem cells isolated from mice [51]. 
Tet3 also displayed key roles in the regulation of the WNT pathway, 
controlling the balance between mesodermal and neuroectodermal 
fate in mouse embryonic stem cells on the generation of neural 
structures [52]. In mouse embryos, Tet3 demethylates the promoter 
region and activates the expression of secreted frizzled-related protein 
4 (Sfrp4) gene, which is responsible for inhibiting the WNT pathway 
[52]. Moreover, the combination of transcriptome techniques and 
pharmacological manipulation, proved that Tet2 and Tet3 regulate 
the Notch and WNT pathways in zebrafish [53], and their inactivation 
during retinal neurogenesis results in the absence of a clear “zone” of 
differentiation and upregulation of Wnt9b [53]. 

Alternatively, in human cancer, the action of TET1 enzyme 
was demonstrated upstream the WNT pathway, and regulate DKK 
(Dickkopf) and SFRP genes expression by demethylation, both 
repressor genes of this pathway. In colon cancer, TET1 gene knockout 
increases proliferation, while its induction, inhibits the proliferation 
and growth of xenograft tumors [54]. TET1 maintains the inhibitors 
of the pathway hypomethylated; its upregulation induces the activation 
of DKK3 and DKK4, and the downregulation of Myc and CyclinD2 
[54]. Moreover, chromatin immunoprecipitation assays demonstrated 
the TET1 binding at the promoters of DKK genes, as well as increased 
levels of 5hmC and the concomitant decrease in 5mC [54]. In epithelial 
ovarian cancer, the expression of TET1 was inversely correlated with 
the clinical advance of the disease; while its upregulation inhibited 
colony forming, cell migration and invasion in SKOV3 and OVCAR3 
cell lines, and EMT in SKOV3. Additionally, TET1 inhibited the 
WNT/β-Catenin pathway (or canonical WNT pathway), through the 
demethylation and upregulation of sFRP2 and DKK1 (Figure 3A) [55].
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Tumor progression in melanoma was also associated with 
changes in 5hmC levels, and the enrichment of pathways by the Kyoto 
Encyclopedia of Genes and Genome evidenced the accumulation of 5mC 
in genes associated with the WNT pathway [25]. In medulloblastoma, 
the subgroup that displays activation of the WNT pathway showed 
lower expression of TET1, pointing out a possible association between 
its downregulation and the activation of the pathway [56].  

TETs and SHH pathway

The canonical Hedgehog (HH) pathway consists, mainly, of the 
glycoproteins Sonic Hedgehog (SHH), Indian Hedgehog (IHH) and 
Desert Hedgehog (DHH) [57]. When SHH is secreted, it binds to the 
12-transmembrane protein Patched-1 (PTCH1), a Smothened (SMO) 
inhibitor. SHH binding promotes abrogation of Patched-1 activity, 
releasing SMO. This event leads to the nuclear localization of glioma-
associated transcription factors (GLI1, GLI2 and GLI3), considered the 
key effectors of this pathway [58].

Another important component of the SHH pathway, and repressor 
of GLI, is the suppressor of Fused (SUFU). SUFU is a negative regulator 
of the SHH pathway that directly binds to GLI, causing its arrestment, 
processing or degradation in the cytoplasm [59]. This mechanism 
prevents activation of SHH pathway target genes [60]. GLI activity 
can be involved in the activation of several genes including CCND1 
(Cyclin-D1, cell cycle), MYC (Proliferation), BCL2 (Apoptosis), 
ANG1/2 (Angiogenesis), SNAIL (EMT), NANOG and SOX2 (Stem 
cells self-renewal); and in the positive feedback loop stimulating 
transcription of GLIs and PTCH1 [61-65]. 

In cancer, the SHH pathway is aberrantly activated due to 
mutations in PTCH1, SUFU or SMO. Persistent activation of the 
pathway stabilizes the expression of GLI1 and GLI2 that promotes 
proliferation and invasion and inhibits apoptosis [58].

Specifically in medulloblastoma, the SHH pathway plays 
an important role in the molecular subgroup assigned as SHH-
medulloblastoma (SHH-MB) [58]. In rhabdomyosarcoma, the most 
frequent soft tissue sarcoma in children, which is divided into two 
major histological subgroups, embryonal and alveolar, is described 
to show HH/SMO pathway activation [65]. Embryonal Tumors 
are characterized by SMO localization in primary cilia and/or GLIs 
hyperexpression. These features are almost exclusively found in tumors 
with activated SHH signaling pathway [43,65]. Clinical trials are being 
conducted to test SMO inhibitors, such as Vismodegib or Sonidegib. 
Nonetheless, despite initial favourable outcomes, some patients still 
present resistance or relapse [43].

SHH is also controlled by TET enzymes. Xu et al. [66] demonstrated 
the role of Tet3 5mC hydroxylase and its CXXC domain in upstream 
transcriptional regulation of genes important in early eye and neural 
development, through loss-of-function studies focused on Tet3 and 
using Xenopus sp. as an experimental model. Depletion of Tet3 exhibited 
effects in a set of key development genes, including, two major SHH 
signaling components: shh and ptc-1, that showed low expression in 
embryos at stage 14, in the absence of Tet3 [66]. Moreover, chromatin 
immunoprecipitation (ChIP) assay demonstrated the binding of 
Tet3 enzyme in promoter region of shh and ptc-1 [66] (Figure 3B). 
In parallel, regulation of the 5hmC status at its targets showed a 
significant reduction in 5hmC at CCGG sites in ptc-2 gene promoter, 
after Tet3 depletion [66]. Of note, the CXXC domain of TET3 has DNA 
interaction and binding to restricted genomic regions, including the 
PTCH1 and SHH genes in HEK293T cells [66].

The control of SHH by Tets can also occur indirectly. Tet1/
Tet3 knockout, in mice (Tet1/3 DKO embryos), induced defects 
in cholesterol synthesis; since SHH signaling requires covalent 
modification of cholesterol for its activity during development. 
Significant decrease in expression of SHH components, such as Ptch1, 
hedgehog interacting protein (Hhip), transcription factors (Gli1/2, 
Pax1/9) and other pathway targets, such as Cyclin D2 (Ccnd2) was 
also observed in this model (Figure 3B). Dysregulation in SHH 
function contributes to developmental abnormalities [67]. Late stage 
Tet1/3 DKO exhibited poor forebrain formation and abnormal facial 
structures, with phenotypes observed in the dysfunction of SHH [66]. 
Thus, the function of TETs enzymes is fundamental for the SHH 
pathway activation during development. In cancer, medulloblastoma 
cell lines classified as SHH subgroup showed high levels of TET1 
expression [68]. However, there are no functional descriptions of 
TET and SHH or about any correlation between them in other tumor 
types.

TETs and TGF-β

The transforming growth factor-β (TGF-β) family consists of 
three TGF-β isoforms (TGFB1, TGFB2 and TGFB3), NODAL, bone 
morphogenetic proteins (BMPs), and growth and differentiation 
factors (GDFs) [69]. These proteins share features regarding signaling, 
regulation and structure, however, the specific function and complexity 
of the canonical and non-canonical pathways remain to be elucidated 
[69-72].  

Figure 3. TET enzymes target signalling pathways. A. TET enzymes demethylated DKK 
and SFPR genes that inhibited WNT pathway in embryonic development and cancer. B. 
Tet1/3 knockout is associated with decreased Ptch1, Hhip, Gli1/2 and Pax1/9 genes, that 
are members of SHH pathway, and reduced downstream genes such as Ccnd2. C. TET3 
demethylates the precursor of miR-3d, and thus, inhibiting TGF-β pathway, and reducing 
epithelia-mesenchymal transition. Whereas TGF-β pathways stimulated DNMT3A and B 
activity in promoter of TET2 and 3, with a reduced in these genes expression. D. The 
control of NOTCH signaling components by Tet2 e Tet3 enzymes.
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The activation of this pathway requires the ligand binding to one 
of the five membranous type II serine/threonine kinase receptors 
and recruitment and transphosphorylation of one of the seven 
type I serine/threonine kinase receptors [69]. After activation by 
phosphorylation, the type I receptor kinase domain triggers the signal 
of the canonical pathway, which comprises the phosphorylation of 
the SMAD-dependent axis, including receptor-regulated SMAD 
proteins (R-SMAD) [69]. During the canonical signaling, SMAD2 and 
SMAD3 with NODAL, activin and TGFB are consistently correlated. 
Alternatively, some authors also describe that TGFB possibly induces 
phosphorylation of SMAD1 and SMAD5, as alternative signals 
triggered by BMPs and GDFs [70,72]. During downstream signaling, 
SMAD2 and SMAD3 form complexes and translocate into the nucleus 
after phosphorylation. In the nucleus, after accumulation and binding 
to cofactors, such as p300-CBP and FOXH1, they trigger transcription 
of several target genes [73]. 

Other potential regulators of TGF-β pathway are the Mitogen 
Activated Protein Kinases (MAPKs), Glycogen synthase kinase 
3β (GSK3β), cyclin dependent kinases (CDKs) and Smurf (SMAD 
ubiquitination regulatory factor). Altogether, they can modulate 
SMADs activities in different manners, including phosphorylation and 
ubiquitination [69].

The TGFB family components are involved in early embryonic 
development and tissue homeostasis in adults. Nonetheless, their 
roles in cellular growth, differentiation, apoptosis, extracellular matrix 
production, EMT and immune-response, have only been partially 
elucidated [69]. However, when aberrantly activated or inactivated, 
depending on the cellular context, they might promote different 
pathologies [74].

Regarding carcinogenesis and tumor initiation, the TGF-β 
pathway shows duality: in the early stages, it might act as a tumor 
suppressor, though later, it might stimulate a pro-carcinogenesis 
microenvironment, promoting in most cases, metastasis [74]. Several 
studies have demonstrated that TGFBR1, TGFBR2, SMAD2 and SMAD4 
are frequently inactivated through mutation, allelic heterozygosity loss 
or inactivation through methylation [70]. In SHH medulloblastoma, 
high SMAD2 expression and IHC staining in patients samples was 
associated with good prognosis while, in Group 3 medulloblastoma, 
the SNAIL/TGF-β axis is associated with metastasis and promotes 
EMT [75].  In others tumors (i.e., melanoma, renal cell carcinoma, 
mesothelioma, glioma and pancreatic ductal adenocarcinoma) there 
are several ongoing clinical trials utilizing TGF-β inhibitors to target 
TGFB1 or TGFB2 or both [74]. Fresolimumab, a TGF-β inhibitor for 
TGFB1, B2 and B3 and PF-03446962(®Pfizer) an ALK inhibitor, are 
the most widely used. Nonetheless, despite the initial good outcomes, 
the authors suggested the combination of TGF-β inhibitors with the 
current standard chemotherapy or epigenetic modulators to improve 
the efficiency of multimodal therapy [74].

In ovarian cancer, TGFB1 induced EMT with downregulation 
of miR-30 family and the restoration of miR-30d inhibited this 
phenotype. Moreover, the action of TET3 in TGF-β pathway in this 
model, occurred through the demethylation of miR-30d precursor 
[76]. Furthermore, when ovarian cancer cell lines SKOV3 and 3OA 
were treated with TGF-β1 (10ng/mL), they showed downregulation of 
TET1 and TET3, although, no alteration in TET2 was observed. TET3 
was the most significantly reduced and when upregulated inhibited 
the TGF-β pathway and resulted in the blockade of EMT with the 

concomitant reduction of the EMT markers, E-cadherin, Vimentin, 
N-cadherin and Snail. Therefore, cells with TET3 expression exhibited 
decreased invasive and migratory capabilities [76]. Also, it has been 
suggested that the TGF-β pathway could regulate TET2 and TET3 
genes expression, by stimulating the expression and recruitment of 
DNMT (DNA methyltransferase) 3A and 3B to their promoter regions, 
inducing hypermethylation and consequent silencing of these genes 
(Figure 3C) [77]. 

TETs and notch pathway

The Notch signalling pathway is critical for embryonic development. 
This pathway is activated by interactions between adjacent cells in 
order to contribute to the formation, growth, and development of 
embryos [78]. Even though Notch was first classified as a neurogenic 
gene, the characterization of Drosophila embryos made it clear that this 
pathway is highly pleiotropic [79]. Notch signaling has been described 
to be activated in somite formation (somitogenesis), heart formation 
(cardiogenesis), muscle tissue formation (myogenesis), hematopoiesis, 
vasculogenesis and angiogenesis, among others [78,80,81].

In mammals, there are four Notch receptors, NOTCH 1-4, and 
five transmembrane ligands, Jagged1 (JAG1), Jagged2 (JAG2), Delta-
like1 (DLL1), Delta-like3 (DLL3), and Delta-like4 (DLL4), which 
interact with each other to activate the pathway. At the molecular 
level, the binding between Notch receptors and their ligands promotes 
two proteolytic cleavage events at the receptors. The first cleavage is 
catalysed by the ADAM-family of metalloproteases and the second 
cleavage is mediated by ɣ-secretase, an enzyme complex that contains 
PRESENILIN, NICASTRIN, PEN2 and APH1. These cleavages release 
the Notch intracellular domain (NICD), which translocates into the 
nucleus and acts as a transcriptional coactivator. NICD cannot bind 
directly to DNA but heterodimerizes with the DNA-binding protein 
RBP-J (recombination signal binding protein for immunoglobulin 
kappa J)/CBF1, forming the CSL complex (CBF1, Su(H) and LAG-1), 
thus, activating the transcription of Notch-target genes [82]. 

Notch pathway was described for the first time in leukemia, 
however, is also involved in other tumors. In breast cancer, low 
expression of NUMB, a negative regulator of Notch pathway, and 
an increased NOTCH1 expression were described in approximately 
50% of primary human mammary carcinomas [83]. Likewise, in 
medulloblastoma, higher expression of NOTCH2 was shown in 15% of 
the cases and high expression of HES1, a target of Notch signaling, was 
associated with decreased survival [84].

TETs enzymes and 5hmC, also play relevant roles in controlling 
the expression of molecules involved in the Notch signaling pathway. 
Some studies have demonstrated a relationship between Notch 
signaling genes and epigenetic modifications in biological processes. 
Notch pathway plays a critical role in osteoblast cell fate and function, 
and endothelial Notch activity is associated with stimulation of 
angiogenesis and osteogenesis [85]. It was reported that TET3 and 
5hmC were upregulated in dexamethasone-treated MLO-Y4 osteocyte-
like cells and pathways enrichment analysis by KEGG showed that 
Notch signaling pathway exhibited dynamic changes in 5hmC levels 
and showed the most significant 5hmC downregulation, among the 
other signaling pathways, in those cells [86]. Changes in NOTCH4 
expression were also found in steroid-associated osteonecrosis 
tissue suggesting that Notch signaling may also partially mediate the 
functional effect of 5hmC changes [86]. 

During differentiation of embryonic midbrain-type neural 
precursor cells derived from human embryonic stem cells occurred 
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an increase of NOTCH1 expression, with gains in 5hmC at the gene 
body and a loses of 5mC at the promoter and gene body. Besides that, 
the NOTCH1 signaling pathway target genes DLL1, HES5, DNER and 
GFAP also gained 5hmC [87]. Moreover, significant hypomethylation 
was observed using bisulfite sequencing in myoblasts, myotubes, and 
skeletal muscle when compared to non-muscle samples at intragenic 
or intergenic regions of the following Notch receptor or ligand genes: 
NOTCH1, NOTCH2, JAG2, and DLL1 [88]. In parallel, an enzymatic 
assay of sites within or near these genes revealed an unusually high 
enrichment of 5hmC (up to 81%) in skeletal muscle, heart, and 
cerebellum [88].  Moreover, a study from Li, C et al. [89] demonstrated 
that Notch signaling in the hemogenic endothelium is regulated by 
Tet2/3 [89], while, it was [53] showed that occur the control of Notch 
signaling by Tet2 e Tet3 during zebrafish neurogenesis. In the absence 
of Tets, there is an upregulation of Notch1a, DeltaA, Axl1 genes (Figure 
3D); and in Tet2 and Tet3 mutants the retina did not differentiate 
properly [53].

Conclusions
In this review, we discussed the role of TETs enzymes and their 

association with signaling pathways in embryonic development and 
cancer.  The expression of TETs is fundamental for normal embryonic 
development and their deletion in animal models has shown to delay 
cell differentiation and result in dysregulated expression of genes 
involved in signaling pathways. Consequently, the absence of TETs 
results in central nervous system defects and retinal deformity.  In 
cancer, low expression of TETs induces activation of the WNT, TGF-β 
and NOTCH pathways, either directly or indirectly. Depletion in 
Tet activity inhibits tumorigenic processes, such as cell proliferation 
and epithelial-mesenchymal transition (EMT). The prospect of TET 
pharmacological or molecular manipulation might have global effects 
that should be considered for future therapeutic intervention.
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