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Abstract
Over the last 20 years whole-genome sequencing of cancer genomes supported the phenomenon of cancer mutation heterogeneity both for point and structural 
variants. Alongside with the whole-genome sequencing projects many next-generation sequencing experiments including ChIP-seq for histone modifications and 
transcription factors, DNase-seq, MeDIP-Seq, Hi-C, and others were collected for thousands of cancer genomes. Machine learning approach became an efficient 
method of predictive modeling because machine learning algorithms are able to consider multiple factors and their interactions and range them in an order of 
importance. Machine learning models, predicting cancer point mutations at 1Mb scale and using as predictors state of the chromatin, epigenetic factors and non-B 
DNA structures, achieved a good predictive power. However, predicting cancer breakpoints appeared to be a more difficult task than predicting point mutations. 
Machine learning models, that were successfully used to predict cancer point mutations, using the same features, could not achieve high performance in predicting 
cancer breakpoints. Nevertheless, the available models demonstrate that aggregating information from omics experiments increases the model prediction power. Here we 
review state-of-the art machine learning  approaches to predict cancer breakpoints and discuss current understanding of the determinants of cancer breakpoint formation.
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Omics data for cancer genome analysis
The large international consortium projects – The Cancer Genome 

Atlas (TCGA) [1], International Cancer Genome Consortium (ICGC) 
[2], and the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 
(PCAWG) Project [3] performed, processed and made publicly available 
thousands of whole-genome next-generation sequencing (NGS) 
experiments. All the accumulated data supported the phenomenon of 
cancer genome heterogeneity [4-6], however many studies aimed at 
revealing regularities in cancer mutation genome landscapes [3,7-10].

At the same time a wide range of diverse whole-genome annotation 
data, which include histone modifications [11], chromatin accessibility 
[11], DNA methylation [11], transcription factor binding sites [12], 
non-B DNA secondary structures [13-16], and others [17], became 
available providing omics studies with invaluable material. Combining 
modern methods of data analysis with omics data will give researchers 
opportunities to look from different angles (see, for example [18]) 
at cancer genomes and get a better understanding of cancer genome 
mutation determinants (Figure 1).

Machine learning approach became the method of choice in 
the era of Big Data, and the Big Data of cancer genomics is not an 
exception [19-21]. The role of machine learning models in genomics 
is not only in predicting functional genomic elements but also in 
revealing the factors that are associated with the genomic element of 
interest [22-26]. Machine learning algorithms can use heterogeneous 
factors as input, then range the importance of the predictors and reveal 
the most influential [27]. Applying machine learning approach to 
predict genomic regions helps understanding most influential factors 
associated with this region [28].

Before the machine learning era, association of factors with the 
studied phenomenon was inferred with statistical tests for significance 
of association and/or enrichment/depletion. Machine learning 
approach is able to reveal weak dependencies that are not detected by 
statistical tests [29].

In cancer genomics, one of the important tasks is to understand 
the factors and mechanisms lying behind the mutagenic processes. 
Below we describe recent studies and state-of-the-art machine learning  
approaches to predict cancer point mutations and breakpoints and 
discuss challenges in predicting cancer breakpoints.

Cancer point mutation determinants

Predictive modeling of cancer point mutations appeared to be 
much more effective than modeling breakpoints. Machine learning  
models of cancer mutation densities at 1Mb scale that aggregated 
data on histone modifications, CTCF binding sites, PolII binding 
sites, recombination rate, replication timing, nucleosome positioning, 
gene density, and conservation level could explain 55% of mutation 
variance [30]. Feature importance analysis revealed that one single 
feature, the histone modification H3K9me3, which is associated with 
heterochromatin, explains 40% of cancer point mutation variation. 
Considering additional features can raise model predictive power only 
by 15%. Thus, the machine learning approach (here, linear regression) 
showed that the arrangement of the genome into heterochromatin and 
euchromatin domains had the major influence on mutation rate [30].

Another study investigated cancer point mutation densities at 
1 Mb scale with machine learning models (here, Random Forest 
algorithm, which is also good at feature importance analysis) using 
cell type-specific epigenomic features [31]. The authors showed that 
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structures [35]. Specifically close association between presence of 
G-quadruplex and breakpoint regions was found in almost 70% of 
genes involved in rearrangements in lymphoid cancers.

Analysis of almost 700 000 cancer breakpoints revealed enrichment 
of the breakpoint regions for G-quadruplex forming sequences [36]. 
Similar to point mutations the analysis was done for densities (i.e., 
frequencies) of features at 1 Mb scale. Additionally for breakpoint 
hotspots enriched in quadruplexes the authors showed association 
with hypomethylated state.

Comprehensive statistical analysis of translocation and deletion 
breakpoints in cancer genomes confirmed significant association of 
breakpoints with non-B DNA structures for a large data set (around 20 
000 of translocations and 46 000 of deletions) [37]. Specifically, repeats 
were frequently found at the translocation breakpoints, and poly-A 
sites were more found at the deletion breakpoints.

Determinants of breakpoints and translocations are investigated 
in [38] and they include non-B DNA structures, recombination-
activating genes, methylation, DNA repair processes, transcription, 
replication, nucleotide insufficiency, and chromatin architecture [38]. 
Many case studies are presented for each of the afore-mentioned 
factors, and overall the study supports the idea of the involvement of 
multiple factors and their interactions on cancer breakpoint formation.

Statistical analysis of enrichment of DNA protein binding and 
open chromatin was done for a set of 147 samples comprising 8 cancer 
types and 14600 structural mutations. It was based on 457 ENCODE 
protein binding ChIP-seq experiments, 125 DNase I and 24 FAIRE 
experiments. The study presented enrichment of protein binding 
and open chromatin in the vicinity of breakpoints. The effect of open 
chromatin state was noticeable at distances up to 200 kb around the 
breakpoints [39].

The experimental study with UV damage revealed that UV lesion 
distribution is similar to mutation rates in malignant melanoma [40]. 
The authors generated genome-wide map of UV-induced lesions, 
and analysis of breakpoints distribution showed that, surprisingly, 

chromatin accessibility (as measured by DNase read densities at 1 Mb 
scale), histone modifications and replication timing together could 
explain up to 86% of the variance in point mutation rates across cancer 
genomes. In this case the machine learning model demonstrated a 
very good performance. Feature importance analysis showed that 
chromatin features of cell-of-origin are much stronger determinants 
of cancer mutation profiles when compared with chromatin features of 
corresponding cancer cells. The modeling also showed that the reverse 
task can be solved – mutation density profiles can be used to detect 
cell-of-origin of a cancer. 

Another comprehensive study of mutation densities, again at 
1 Mb scale, included data on gene expression, replication timing, 
heterochromatin (H3K9me3 signal) and DNA mismatch repair state 
(measured via microsatellite instability status) [32]. The analysis 
revealed a DNA mismatch repair factor as the basis of the observed 
point mutation variation. The authors showed that mutations arising 
after the inactivation of DNA mismatch repair are no longer enriched 
in early replicating euchromatin as it was thought before. 

Comprehensive analysis of non-coding point mutations together 
with indels specifically in 212 gastric cancer genomes was done in 
[33]. 34 point mutation hotspots were significantly enriched in CTCF 
binding sites, which are indicative of chromatin domain boundaries. 
Mutation hotspots overlapping CTCF binding sites showed 
chromosomal instability [33].

Local factors, such as DNA wrapped around nucleosomes, or 
transcription factors bound to DNA, also influence mutation rates. 
Influence of the local factors and their interaction with DNA repair 
systems and/or mutagenic agents are reviewed in [34].

Cancer breakpoint determinants

Earlier, cancer breakpoint determinants were inferred via statistical 
enrichment/depletion and association tests. Vicinities of breakpoints 
were investigated for the presence of non-B DNA structures - 
G-quadruplexes, triplexes, cruciforms, hairpins, and Z-DNA, and 11 
genes involved in well-known translocations harbored non-B DNA 
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Figure 1. Integrative analysis of omics data could help understanding cancer mutation determinants
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DNase-accessible open chromatin (euchromatin) is depleted in UV-
damaged regions, while heterochromatin at the nuclear periphery is 
vulnerable. These results agree with the results for point mutation 
density correlation with closed chromatin state [31].

As it was demonstrated earlier, models that predict density of 
somatic point mutations with machine learning approach using 
histone code and chromatin accessibility could explain up to 86% of the 
variance of the mutation densities. However machine learning models 
for predicting density of breakpoints could not achieve even a half of 
the same predictive power.

Machine learning approach to predict densities of both point 
mutations and breakpoints was implemented in [41]. The authors 
demonstrated the power of machine learning  algorithms (here linear 
regression and Random Forest) to predict densities of mutations using 
different set of features including non-B DNA structures, histone 
markers and replication timing, as combined sets or separately. In 
predicting densities of point mutations (500 kB regions) the authors 
showed that densities of non-B DNA structures could explain from 37% 
(breast) to 52% (malignant lymphoma) of point mutation variance. 
Epigenetic features together with replication timing raise the explained 
variance by 10-15%, but models built on the combined predictors of 
epigenetic markers and non-B DNA structures always show the highest 
performance with explained variance in the range of 43-76% depending 
on the type of cancer. Predicting breakpoint densities with the same set 
of features is not so successful. Using the combined set of features the 
variance explained by the model does not exceed 10% for all cancers 
with an exception of 18% for the breast cancer.

Machine learning  model (here, linear regression) of both liquid 
and solid cancers showed that breakpoints preferentially occur in open 
chromatin and in acrocentric chromosomes [42]. The model used 
chromatin density, gene density and CTCF-binding site densities as 
features. Multiple regression analysis identified that only chromatin 
density can be used as the primary statistically significant predictor.

Association analysis of breakpoints in 22 344 structural variants 
showed strong association with gene-rich regions [43]. Separate 
analyses of recurrent and nonrecurrent chromosome abnormalities 
showed that association also remains highly significant.

Machine learning approach for predicting density of DSB breaks, 
that were generated by DSBcapture [44] and BLESS [45] methods, was 
implemented in [46]. The authors trained Random Forest algorithm, 
using densities of histone marks, DNase-seq, DNA shape parameters, 
CTCF and p63 binding sites at 1 kb scale. Surprisingly, the model 
achieved extremely high prediction power of 0.97 ROC AUC. Most 
likely, the high predictive power of the model can be explained by the 
biased method of DSB generation with restriction enzyme EcoRV .

Another machine learning study explored the relationship between 
cancer breakpoints and methylation of CpG islands by building linear 
regression models. The data include more than 110 thousands DNA 
methylation probes with more than 13 thousands genes associated with 
CpG islands. It was found that methylation was altered in the vicinity of 
breakpoints up to ± 1 Mb region [47]. Here modeling revealed the effect 
of breakpoints on changes in methylome. Machine learning approach 
was used to study differential impact of stem-loops (or cruciform) and 
quadruplexes on breakpoint hotspots formation in different types of 
cancers [48]. The authors used logistic regression and Random Forest 
algorithms to predict breakpoint hotspots and estimate contribution 
of each variable depending on cancer types. The training set included 
almost half a million breakpoints, and the main result of the study is 

that stem-loops and quadruplexes have different impact on breakpoint 
formation depending on the type of cancer. Stem-loops appeared to 
be more important predictors for the blood, brain, liver, and prostate 
cancer breakpoint hotspot profiles while quadruplexes - for the bone, 
breast, ovary, pancreatic, and skin cancer. For the overall cancer profile 
and uterus cancer the joint model shows the highest performance.

Overall, all the mentioned studies tested different factors from 
epigenomics, transcriptiomics, non-B DNA structures, but either the 
models did not achieve a high predictive power on large data sets, or 
the study was confined only to few factors, or the data set was not large 
enough. All of the predictors, mentioned in this section, were found 
to be enriched or associated with breakpoints, but the comprehensive 
modeling including large sets of omics data and large sets of cancer 
breakpoint data has not yet been published.

Results from Pan-Cancer Analysis of Whole Genomes 
(PCAWG) Consortium

The comprehensive analysis of 2,658 cancers across 38 tumor types 
presented by PCAWG Consortium described patterns and signatures 
of structural variation [49]. All documented structural variants were 
systematically ascribed to classes with two major divisions – complex 
and simple. Simple rearrangements include variants well-known 
before, such as deletions, inversions, duplications and translocations. 
However, the complex rearrangements was not well-characterized 
earlier and these rearrangements include chromothripsis (many 
breakpoints are located in one chromosomal region) and chromoplexy 
(breaks in several chromosomes are rejoined incorrectly), local n-jumps 
and cycles of templated insertions. Now, having all these classes of 
rearrangements (consequently, breakpoints) it is of great interest to 
study breakpoint determinants separately for each class, specifically 
for complex events such as chromothripsis and chromoplexis. Another 
interesting finding from PCAWG Consortium is the existence of 
signatures of structural variation [49]. Likewise cancer point mutations 
that can be reconstructed from the differential action of a finite number 
of mutational processes [50], structural mutations can also provide 
insights about mutagenic processes. The study demonstrated that the 
size distribution of tandem duplication and deletion is different in 
different patients, and frequency and patterns of structural variants 
vary across tumour types [49]. 16 structural-variant signatures were 
identified, and this opens a wide row of tasks for Machine learning  
modeling in order to find associations between signatures and 
mutagenic processes.

One of the PCAWG Consortium studies is devoted specifically 
to comprehensive analysis of chromotripsis. It was shown that 
chromothripsis is pervasive across cancers having a frequency of 
more than 50% in several cancer types [51]. The study also confirmed 
heterogeneity of chromothripsis that was found even higher than 

previously estimated.

Conclusion
Machine learning approaches that can aggregate multiple factors 

really help in understanding cancer breakpoint determinants. However 
none of the predictive models could achieve the performance of 
predictive models for cancer point mutations. Currently, only two 
groups of factors – histone modifications and non-B DNA structures 
were tested as predictors on large data sets. Adding other groups 
from omics experiments into machine learning approach – such as 
transcription factors biding sites, chromatin state, CTCF binding 
sites, methylation status, chromatin 3D organization, and other 
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factors – likely will help in finding more or stratifying determinants 
of cancer breakpoint formation. The reports of comprehensive 
analysis of structural variation in cancers from PCAWG Consortium 
open new directions of breakpoint investigations: building predictive 
models using aggregated omics data and discovery of the mutagenic 
mechanisms from structural mutation signatures.
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