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Abstract
In this review, we have focused on immune restoration after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and solid organ transplantations (SOT). 
We discuss the kinetics of cytokine secretion during immune reconstitution phases that play a unique role in the connection between innate and adaptive immunity, 
therefore essential in normal and pathological immune reconstitution. We overview the importance of T cell immunity for antigen-specific immune reconstitution 
and the production of cytokines. We briefly touch upon a graft versus host disease and other immunopathology that accompany poor immune restoration after 
transplantation and discuss therapeutic interventions. 
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Introduction
Recent advances in solid organ and allogeneic hematopoietic stem 

cell transplantations (allo-HSCT) in the field of oncology have been 
attributed to stringent HLA matching between donors and recipients 
and impressive ranges of immunosuppressive therapy.  However, new 
challenges have emerged, such as immune restoration disorders, which 
are represented by the unique symptomocomplexes of maladaptive 
recovery of the immune system. Patients eligible for transplant undergo 
high doses of chemo- or- radiation therapy, before transplantation, 
and prolonged iatrogenic immunosuppression afterward. Significant 
morbidity and mortality have reported in these patients due to viral 
infections, transplant rejection, graft versus host disease, or malignant 
disease relapse (Figure 1) [1].  During immune reconstitution, adequate 
interactions between innate and adaptive immunity are key players in 
maintaining the capacity to generate T cell populations that are able to 
control pathogens and to preserve peripheral tolerance. 

Interaction between innate and adaptive immunity and 
immune reconstitution disorders

The fundamentals of immune system activation are complexed, 
they appear to begin with activation of innate phagocytic leukocytes 
(macrophages) by processed antigens. Activated macrophages secrete 
cytokines which are essential for communication between lymphocytes 
and macrophages, and play a unique role in macrophage M0 to M1/
M2 polarization [2]. M1 type macrophages express CD86 and secrete 
inflammatory mediators like tumor necrosis factor-alpha (TNFA), 
IL1B, IL6, IL8, IL12, and IL23 [3,4]. M1 type is predominantly developed 
during acute infection when M0 macrophages are stimulated by 
cytokine interferon-gamma (IFNG), along with pathogen-associated 
molecular pattern molecules (PAMPs) [5]. Activated M1 macrophages 
concentrate to the site of infection and induce inflammation via nitric 
oxide (NO), reactive oxygen intermediates (ROI), and other damaging 
molecules. Subsequently, M1 polarizes into M2 type by IL4, IL10, IL13, 

and transforming growth factor-beta (TGFB), secreted by T cells. These 
macrophages phagocytose cellular debris to resolve inflammation and 
to facilitate wound healing [6,7]. M2 macrophages abundantly express 
mannose receptor, dectin-1, CD163, CD209, scavenger receptor A 
and B1, CCR2, CXCR1, and CXCR2. Additionally, M2 type exhibits 
different metabolic profiles: high production of ornithine and 
polyamines through the arginase pathway [8]. 

The proper switch between the M1/M2 phenotypes is important to 
the resolution of inflammation. It is controlled by T-helper (Th1/Th2) 
cells, effector T cells, and T-regulatory (Treg) cells  [8-11]. However, in 
the settings of immunodeficiency, inappropriate macrophage polarization 
drives immune reconstitution pathology [12]. In the absence of IFNG 
signaling, macrophage activation by interferon alfa (IFN type II, IFNA) 
is likely to take over in T-cell- deficient patients with compromised IFNG 
responses [13]. IFNA displays protective anti-inflammatory functions via 
direct inhibition of pro-inflammatory cytokines, inductions of cytokine 
antagonists, or re-directing the signaling through negative feedback loops 
[14]. Thus, in the immunocompromised host, adjunct IFNG (IFN type 
II) and IFNA (IFN type I) treatments may allow the switch of the M1 
polarization proinflammatory arm to the M2 polarization arm in order to 
control the inflammatory symptoms during post-transplantation immune 
reconstitution disorders. 

Several animal model studies revealed that the induction of long-
term allograft survival by the blockade of the CD28 and CD40 ligand 
T cell co-stimulation pathways is dependent on IFNG expression [15-
17]. Through this mechanism IFNG limits expansion of activated T 
cells and facilitates long-term acceptance of transplanted organs. The 
pitfall, however, is that the excess of IFNG can promote vasculopathy 
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an enhanced ability to produce IFNG upon re-stimulation. These 
findings suggest that once activated mature NK cells may acquire stable, 
heritable properties that influence their behavior during subsequent 
infections [27]. Thus, NK cells appear to remember their past encounter 
with the antigens, which may be utilized as a future therapeutic strategy 
to combat post-transplantation immune reconstitution pathology [28,29]. 

Kinetics of innate and adaptive immune reconstitution in 
allo-HSCT recipients

Stem cell transplantation has become a lifesaving treatment for 
patients with immuno-hematological malignancies. For patients who 
undergo allo-HSCT, immune recovery is often accompanied by a high 
risk of infection-associated morbidity and mortality [30-38]. Allo-
HSCT from HLA-matched sibling donors (MSD) generally provides 
the best clinical outcomes [39]. Banked umbilical cord blood (UCB) is 
a viable alternative for patients who don’t have MSD [40]. 

To evaluate quantitative and qualitative immune recoveries several 
studies have been conducted [35,41-44]. In UCB recipients, slower T 
cell subset recovery with lower numbers of CD3+CD8+ (naïve and 
effector), CD3+CD4+ (naive and memory), and regulatory T cells were 
observed, than in MSD recipients, from day 60 to 1 year of observation 
[45].  Studies showed that sufficient IFNG production by CD4+ 
and CD8+ T cells toward viral antigens protects the recipients from 
reactivation of many latent viral diseases, particularly cytomegalovirus, 
CMV [46,47]. However, the rate of recovery and maturation of NK 
cells, and NK-driven IFNG production, did not significantly influence 
the occurrence of viral infections after allo-HSCT [48]. Higher 
frequency of viral infections and delayed immune T cell reconstitution 
was observed in UCB recipients [40,49-52]. It is hypothesized that 

in solid organ recipients through immune cell activation and vascular 
remodeling [18,19]. Chronic rejection presents in the allograft 
vasculature as an immune-mediated, progressive vascular occlusion 
that results in ischemia and subsequent graft death [20]. Interleukin 
(IL33) is  released from damaged or dying cells, triggers Th2-biased 
immune cell activation regulatory T cell and M2 macrophage expansion 
at the sites of graft rejection. By promoting T helper type 2 immunity, 
IL33 counterbalances IFNG-dominated Th type 1 immunity. It has 
been demonstrated that injections of IL33 reduce the formation of 
atherosclerotic plaques and vasculopathy, via driving the switch of a 
Th1 to Th2 in apolipoprotein E deficient animals [21], which suggests 
potential applicability of IL33 as biologics, in treating solid-organ 
recipients experiencing chronic allograph rejection. However, due 
to activation of NK cell-mediated hyper-cytotoxicity through CD95, 
granzymes, and perforins, IL33 usage is limited in the context of 
contact-dependent cardiac allograft rejection driven by abnormal 
IFNG production [22].

Natural killer (NK) cells are generally considered to be components 
of innate immune defense because they lack antigen-specific cell surface 
receptors [23]. NK cells have been recognized as major producers 
of cytokines such as IFNG in many physiological and pathological 
conditions [24]. NK cells also produce an array of other cytokines, 
both pro-inflammatory and immunosuppressive, such as TNFA and 
IL10, respectively. Also, they secrete growth factors such as GMCSF, 
GCSF, and IL3. In addition, NK cells are able to secrete chemokines, 
including CCL2, CCL3, CCL4, CCL5, and CXCL8 [25]. Recently, NK 
cells have been discovered to possess functions of an adaptive immune 
response. Immunological memory is a hallmark of adaptive immunity 
[26]. In vitro-activated NK cells (with cytokines IL12, IL15, IL18) and 
subsequently adoptively transferred into naïve mouse recipients have 

Figure 1. Immune complications after cell and organ transplantation
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adaptive and innate immune cells synergize their effort to control latent 
infections in UCB stem cell transplant patients. Several studies showed 
rapid quantitative recovery of NK cells after transplantation, however, 
in the absence of thymic function and incomplete recovery of T cells, 
NK cells alone do not sufficiently function to combat infections unless 
combined with gene-modified virus-specific adaptively transferred 
T lymphocytes [53,54]. The excessive expansion of natural killer 
cells in in vitro assays has previously been reported to inhibit T cells’ 
proliferation via p21 overexpression, and NKG2D-expressing NK cells 
exhibit cytotoxicity towards T helper cells, specifically Th17 cells [55]. 
However, we still need to understand in vivo communication between 
NK-, T-, and antigen-presenting cells during immune reconstitution 
in recipients who undergo various cellular treatment regimens [56-59].  

Several studies showed that the incomplete ablation of NK cells 
in the graft resulted in the improvement of recipients’ outcomes, but 
donor‐recipient KIR ligand matching might be an even  more efficient 
strategy for NK cell‐mediated protection against CMV reactivation 
[29,60]. On the other hand, the expansion of Tregs inhibits pro-
inflammatory responses in immune cells from the adaptive and 
innate compartments including NK cells and antigen-presenting 
cells (APCs) [61]. This is why in vitro expanded Tregs might be 
an attractive approach to achieve normal kinetics of immune 
reconstitution after transplantation [62-64]. Both options need to 
be further explored.

Treatment approaches for improvement of allogeneic HSCT 
immune recovery

It is very important for immune reconstitution that the grafts 
yield a sufficient amount of hematopoietic stem cells (CD34+ HSC). 
Mobilization of donors with granulocyte-colony stimulating factor 
(G-CSF) is the standard procedure for peripheral blood stem cell 
grafts in allo-HSCT.  The addition of subcutaneous injection of drug 
plerixafor  improves CD34+ HSC recovery from the graft, without 
altering the T and NK cell recovery, including Tregs cells, with 
anticipation to improve long-term transplant outcomes [65].

Post-transplantation, the adoptive transfer of T cells targeting the 
viral antigens during immune reconstitution can treat infections [66]. 
Adoptively transferred Epstein Barr virus (EBV) specific CD4+ and 
CD8+ T lymphocytes from the donor can reconstitute the patient’s 
immune responses against EBV [54]. After allo-HSCT, cytomegalovirus 
(CMV)-specific T cells are used for the successful treatment of 
refractory CMV infections [67,68], and adenovirus-specific T cells 
from a donor are used for the treatment of patients with adenovirus 
infections [69]. Invasive fungal infections (especially  aspergillosis) are 
another example of therapeutic applications of fungal specific T cell 
transfers [70]. Treatment with aspergillus-specific T cells has shown 
suppression of antigenemia and the prevention of invasive aspergillosis 
in many patients [71]. Hence, the adaptive cellular immune therapy has 
shown high efficacy in restoring the anti-infectious T cell immunity 
after allo-HSCT [72]. 

Many clinical studies test cytokine agonist-receptor complexes. 
Several studies have shown the benefit of IL15 analogs to restore 
immune homeostasis in transplant recipients. After allo-HSCT, 
immune activation was enhanced within 2 months with IL15/
IL15R complexes and didn’t increase the rate of adverse events [73]. 
Exogenous administration of IL7 has shown to boost antigen-specific 
T cell responses to viral infections [74]. A phase 1 clinical trial of 
recombinant human IL7 (hIL7) showed that CD3+, CD4+, and CD8+ 
counts are increased in hIL7-treated allo-HSCT recipients [75]. Hence, 

hIL7 carries a positive perspective for new treatment approaches to 
immune reconstitution disorders [59].

Kinetics of immune reconstitution and immune complications 
after solid organ transplantation

In solid organ transplantation (SOT), the proinflammatory 
responses triggered by the gradual decrease of immunosuppressive 
agents, but the continuation of antimicrobial and antiviral therapies 
are believed to be behind the development of post-transplant immune 
reconstitution pathology [65]. This pathology is presented in three 
forms; allograft rejection, graft versus host disease (GVHD), and 
immune reconstitution inflammatory syndrome (IRIS). 

Th1 and Th17 cells are the primary mediators of allograft rejection. 
On the other hand, Tregs and Th2 cells promote graft tolerance [76-
79]. The immunosuppressive regimens are the gold standard in 
transplant recipients to induce tolerance by downregulating Th1, Th17 
cells, and upregulating Th2 cells, with or without Tregs expansion 
[80]. Combined immunosuppression with calcineurin inhibitors, 
mycophenolate mofetil, and steroids has emerged as a risk factor for 
cryptococcus (C.) neoformans-induced IRIS in adult SOT recipients. 
Calcineurin inhibitors like tacrolimus and cyclosporine A suppress 
Th1 cells and boost Th2 cell activity [81-83]. Also, they inhibit 
proliferation of Tregs (CD4+CD25+FoxP3+ cells) by blocking IL2 
production [84,85]. By blocking IL2, immunosuppression causes a 
qualitative CD4+ deficiency, resembling the quantitative defect that 
characterizes HIV infection. Thus, the withdrawal of these anti-IL2 
agents in SOT recipients could theoretically direct the balance toward 
pro-inflammatory responses of memory T cells, resembling the effect 
of CD4+ count comeback in HIV patients post ART. Moreover, 
calcineurin inhibitors and rapamycin inhibit Th17 cell generation [86-
88]. Corticosteroids suppress Th1 cells and marginally promote Th2 
cells and Tregs [89,90].

In the adult SOT population, immune reconstitution inflammatory 
syndrome (IRIS) has been reported as a paradoxical clinical 
deterioration following the initiation of antifungal regimens to combat 
opportunistic mycoses with a high incidence of graft failure in renal 
transplant recipients [91-95]. Typically, the patient shows an initial 
improvement, followed shortly by a deterioration similar to what was 
first described in HIV patients post ART [96,97]. Clinical findings of 
IRIS in SOT recipients are similar to those in patients with HIV with 
both local and systemic manifestations: painful lymphadenitis, high 
fever, central nervous system manifestations, and soft tissue infections 
[96, 98, 99]. In the adult SOT population, the C. neoformans is the 
pathogen most commonly associated with IRIS [91, 96]. Other reported 
pathogens include CMV and Mycobacterium tuberculosis [92,93]. 

The most significant determinant that impacts post-transplant 
quality of life is graft versus host disease (GVHD). In survivors of 
solid organ transplant, GVHD is a major cause of long-term morbidity 
and mortality. Contradictory evidence revealed that IL33 can either 
constrain or promote type 1 immune responses during GVHD [100-
102]. The timing of IL33 administration and/or release may represent the 
crossroad that identifies the direction of immune response effectuated. 
IL33 infusion of recipients before the myeloablative conditioning 
regimens led to the expansion of populations of myeloablation resistant 
host Treg cells [103]. These IL33-expanded Treg cells constrained 
donor effector T cells to GVHD-targeted tissues and obviated GVHD 
[103]. When administered after allo-HSCT, IL33 inversely associated 
with exacerbation of acute GVHD-related lethality in mice [104]. Thus, 
the timing of treatment with IL33 may be beneficial for the outcomes if 
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the alloimmune response is driven away from the typical Th1 response 
towards a Th2 type immune response.

The prevention of chronic rejection of the allograft is still a 
preeminent challenge in SOT. Experimental and clinical data suggested 
a significant role for allospecific immune responses, particularly IFNG 
producing T cells in chronic rejection of the allograft [105-107]. 
The redirection of Th1 response towards Th2 immunity has been 
hypothesized to be a promoter for allograft survival and tolerance with 
less atherosclerosis [18,108,109]. 

Although IL33 treatment may be promising in chronic allograft 
rejection, it has been suggested that Th2 cytokines can promote acute 
graft dysfunction as both Th1 type and Th2 type cytokines are expressed 
in acute phase rejection [109-111]. Additionally, IL5 secreted by Th2 
and eosinophils have been specifically described as potent mediators of 
acute graft rejection [112].

Summary
Adequate immune reconstitution after allo-HSCT or solid organ 

transplantation is the most important determinant for survival, as 
most life-threatening complications (e.g. viral infections, IRIS or 
GVHD) are associated with delayed immune function restoration 
and poor outcomes. The development of novel biotherapeutics and 
repurposing of existing drugs and biologics, with potentially more 
selective approaches for achieving the control over viral reactivations 
and durable graft tolerance, may in the future reduce the need for 
iatrogenic immune suppression post-transplantation.
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