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Abstract
The mechanisms underlying the rapid-acting antidepressant effects of ketamine have not been fully identified. In current study, we observed that a single subanesthesia 
dose of ketamine strongly decreased the immobility time of Sprague–Dawley rats in forced swim test.  Ketamine injection significantly increased GluR1 expression 
and GluR1 Ser845 phosphorylation in prefrontal cortex. Intracerebroventricular injection of PKA inhibitor H89 completely eliminated the fast antidepressant-like 
responses of ketamine in force swim test. Our results suggest that activation of PKA and phosphorylation of GluR1 Ser845 are critical for fast antidepressant action 
of ketamine. 

Introduction 
Major depressive disorder (MDD) is a serious public health problem 

with a lifetime prevalence of 17% in the United States [1]. Despite the 
high incidence of MDD and its socioeconomic impact, the etiology of 
MDD remains largely unknown. Existing treatments for MDD usually 
take weeks to months to achieve their antidepressant effects, and a 
significant number of patients do not have adequate improvement 
even after months of treatment. In addition, increased risk of suicide 
is a major public health concern during the first month of standard 
antidepressant therapy. Thus, improved therapeutics that exert 
antidepressant effects within hours or several days of administration 
are urgently needed. 

Recent clinical trials show that a single subanesthesia dose (0.5-
20 mg/kg) of ketamine, a noncompetitive ionotropic glutamatergic 
NMDA receptor antagonist, produces rapid antidepressant responses 
in patients suffering from MDD [2]. Treatment-resistant, depressed 
patients reported alleviation of core symptoms of major depression 
within hours of a single dose of intravenously infused ketamine, with 
effects lasting up to 2 weeks [3]. Subsequent studies reported significant 
efficacy of ketamine in reducing suicidal ideation in individuals 
exhibiting treatment-resistant depression [4]. 

The discovery of ketamine’s rapid-acting antidepressant effect has 
been exciting. However, the psychotomimetic properties and abuse 
potential of ketamine necessitate caution in promoting this compound 
as a general treatment for depression. Understanding the underlying 
mechanism of action of ketamine linked to behavioral improvement 
is of significant importance for developing novel, safe and fast-acting 
antidepressants.

Materials and methods
Animals

Male and female Sprague–Dawley rats weighing 200–350 g were 
used for all behavioral experiments (purchased from Guangdong 

Animal Experiment Center, Guangzhou, Guangdong, China). Animals 
were maintained on a 12-h light/dark cycle in a temperature- and 
humidity-controlled facility with ad libitum access to food and water. 
All experiments were in accordance with US National Institutes of 
Health guidelines and approved by the Guangzhou Medical University 
Institutional Animal Care and Use Committee. 

Forced swim test 

In the pretest session, rats were placed into a Plexiglas cylinder 
(65-cm-height, 30-cm-diameter) filled to a height of 45 cm water (22°C 
to 24 °C) for 15 min. Water was changed between subjects and rats 
were dried by paper towel after swim. After ketamine or saline injection 
for different period of time, the test session were performed twenty 
four hours later. The test session was 15 min for each subject and was 
recorded by a video camera positioned on the side of the cylinder. 
However, only the first 5 min of test session was analyzed and scored 
by an observer blind to group assignment. A decrease in immobility 
time is suggestive of an antidepressant-like response.

Acute prefrontal brain slices preparation 

These methods are described in detail in our previous publications 
[5,6].  Rats were killed by decapitation after sedation with. Prefrontal 
cortices (PFC) were isolated and sectioned into 400-μm-thick slices 
in ice-cold ACSF ( in mM: 124 NaCl, 3 KCl, 1.25 NaH2PO4, 1.5 
MgCl2, 2.5 CaCl2, 26 NaHCO3, and 10 glucose,  bubbled with 95% 
O2/5% CO2) using a Leica VT 1200S vibratome (Leica Microsystems 
Inc., Bannockburn, IL, USA). The slices were maintained at room 
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temperature for over 1 hour in an interface holding chamber in a 
humidified atmosphere saturated with 95% O2/5% CO2. The slices 
were then transferred to submersion-type bottles containing 10 ml 
ASCF and bubbled with 95% O2/5% CO2.

Intracerebroventricular injection

Rats were deeply anesthetized with isoflurane and heads were 
mounted in a stereotaxic instrument. Double cannulae (26 gauge; 
Plastics One, Roanoke, VA, USA) were inserted bilaterally into left 
and right lateral ventricles (coordinates relative to bregma: −0.9 
mm anterior/posterior (AP), ±1.5 mm medial/lateral (ML), −3.3 
mm dorsal/ventral (DV) from dura). Postoperative care consisted in 
administration of carprofen (5 mg/kg) and topical triple antibiotic for 
3 days. After a 7-day recovery period, rats were injected with 50 nM 
H89 (in 10 µl ACSF) or  same amount of DMSO (in 10 µl ACSF)  into 
the lateral ventricles at the rate of 0.25 µl/min with an injection cannula 
(26GA) protruding 0.5 mm beyond the guide cannula 1 hour before 
ketamine injections (i.p.). The injection cannula stayed in the guide 
cannula for 5 min after infusions.

Western blotting

After drug treatment, prefrontal homogenates were lysed using 
buffer containing 50 mM Tris-Cl, 150 mM NaCl, 0.02% NaN3, 1% 
Nonidet P-40, 0.1% SDS, 0.5% sodium deoxycholate, 5 μg/ml leupeptin 
and 1 μg/ml aprotinin. Proteins were separated by SDS-PAGE and 
transferred to nitrocellulose membranes. The membranes were blocked 
at room temperature (22°C to 24°C) for 1 h in a solution containing 130 
mM NaCl, 2.5 mM KCl, 10 mM Na2HPO4, 1.5 mM KH2PO4, 0.1% Tween 
20 and 5% BSA (pH 7.4). The membranes were treated with the primary 
antibodies against Ser845-phosphorylated GluR1 (1:1000; Millipore 
AB5849). After rinses in TBS-Tween, the membrane was incubated 
for 1 hr at room temperature in horseradish peroxidase-conjugated 
goat anti-rabbit IgG (1:1000, Cell Signaling Technology #7074). The 
immunoblot was developed with enhanced chemiluminescence 
(Amersham). Membranes were then stripped, blocked, and reprobed 
with antibodies against GluR1 (0.5 μg/ml; Thermo Scientific PA1-
37776) or β-actin (1:2000; Cell Signaling Technology #4967). Levels of 
phosphorylation, expressed as the ratio of phospho-specific intensity 
divided by total protein intensity and computed with ImageJ, were 
used for statistical analysis. For display purposes, blots were cropped 
and brightness and contrast were adjusted globally using Photoshop.

Statistical analysis

Data are presented as mean ± SE. Significance of the difference 
between two groups was assessed with unpaired two-tailed t-test or 
Bonferroni test  after one-way repeated ANOVA test. A p value less 
than 0.05 is considered statistically significant.

Results
Ketamine reduced immobility of animal in forced swim test

We examine the antidepressant effect of ketamine and detected 
ketamine’s acute effect in Sprague–Dawley rats for significant 
behavioral responses in forced swim test, an antidepressant (AD)-
predictive task. Compared to saline injection group, 1 h, 3 h and 6 h 
ketamine injection (10 mg/kg, i.p.) significantly reduced immobility 
time of animals during forced swim test (Figure 1). 

Ketamine enhanced GluR1 Ser845 phosphorylation in PFC 

Previous studies show that AMPA receptor activation is necessary 

for ketamine’s antidepressant-like effect [7,8]. While, AMPA 
receptor phosphorylation is critical for the activation of the receptor. 
Among the multiple phosphorylation sites of AMPA receptor, the 
phosphorylation of GluR1 Ser845 site is important for AMPA receptor 
translocation from cytosol onto postsynaptic membrane. We therefore 
examine the impact of ketamine on GluR1 Ser845 phosphorylation in 
prefrontal cortex, a brain region that is heavily involved in the etiology 
of depression. After ketamine injection, prefrontal cortical brain 
slices were prepared as described in the Methods. Using the acutely 
prepared prefrontal cortical slices, western blot experiments detected 
that ketamine application time-dependently increased GluR1 Ser845 
phosphorylation and total GluR1 (Figure 2 A-C). 

The fast acting antidepressant response of ketamine. 

GluR1 Ser845 is phosphorylated by PKA. To test whether GluR1 
Ser845 phosphorylation is necessary for ketamine’s antidepressant 
effect, H89 (50 nM, in 10 µl ACSF),  a PKA inhibitor was infused 
intracerebroventricularly (i.c.v.) 1 hour before ketamine injection 
(i.p.). H89 administration alone increased immobility time of animal 
in forced swim test. However, H89 totally blocked ketamine-induced 
reduction of immobility  in forced swim test (Figure 3). 

Discussion
 Previous studies show that AMPA receptor activation and synaptic 

protein synthesis is necessary for ketamine-induced antidepressant-
like responses [7,8]. It has been speculated that inhibition of tonically-
active GABAergic interneurons and activation of voltage-gated 
calcium channels underlie ketamine-induced synaptogenesis [7,9]. 
However, blocking GABAergic transmission by picrotoxin, a GABAA 
receptor antagonist, does not affect depressive behaviors [8], indicating 
that blocking GABAergic transmission-induced disinhibition of 
principle neurons is not sufficient to generate the rapid antidepressant 
response of ketamine. Monteggia et al. [10,11] demonstrated that 
ketamine deactivates eukaryotic elongation factor 2 (eEF2) kinase 
(also called CaMKIII), resulting in reduced eEF2 phosphorylation 
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Figure 1. Ketamine decreases the immobility time in forced swim test. Compared to 
the saline group, 1 h, 3 h and 6 h ketamine injection (10 mg/kg, i.p.) strongly reduced 
immobility time of Sprague–Dawley rats in forced swim test after different period of 
ketamine injection ( Saline vs ketamine (in second): 50.3 ± 5.2 (n=6 rats) vs. 20.3 ± 3.4 (n=7 
rats) at 1 h; 64.8 ± 4.2 (n=6 rats) vs. 20.2 ±  3.8 (n=7 rats) at 3 h and 72.7 ± 4.5 (n=x rats) 
vs. 23.7 ± 3.6 (n=7 rats) at 6 h). **, p<0.01 compared with the saline group, unpaired t-test.
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and de-suppression of BDNF translation as well as increases surface 
expression of AMPA receptors. However, other researchers observed 
that relative to CaMKII, CaMKIII exhibits approximately two orders 
of magnitude greater affinity for calmodulin and is sensitive to > 
5-fold lower calcium concentrations. They also demonstrated that 
CaMKIII activity and eEF2 phosphorylation are suppressed by NMDA 
antagonist only in the condition when synaptic transmission is blocked 
by TTX [12]. Furthermore, a recent clinical research study observed 
that the expression of eEF2 (p-eEF2) increases in the blood plasma of 
depressed patients treated with ketamine [13]. These results suggest 
that suppression of eEF2 phosphorylation probably could not fully 

account for  ketamine-induced increase of BDNF release and AMPA 
receptor expression, especially in vivo where TTX is absent.

Phosphorylation of AMPA receptors has been show to play an 
important role in expression of synaptic plasticity at excitatory synapses. 
There are a least ten phosphorylation sites have been identified on the 
C-terminal domains of AMPA receptor GluR1-GluR4 subunits [14-16]. 
Among these phosphorylation sites, GluR1 Ser845 is phosphorylated 
by PKA[17-19]. Phosphorylation of GluR1 Ser845 increases the open-
channel probability of AMPA receptors and therefore enhances the 
function of AMPA receptor [19,20]. Furthermore, GluR1 Ser845 
phosphorylation is suggested to be important for rapid synaptic 
insertion of GluR1 subunit-containing receptors [21]. Our result show 
that ketamine strongly enhanced GluR1 Ser845 phosphorylation, 
suggesting that ketamine may enhances the function of AMPA receptor 
through phosphorylation of the receptor, which may underlie the rapid 
antidepressant effect of ketamine. Indeed, H89 totally inhibited the 
antidepressant-like effect of ketamine in forced swim test, indicating 
that PKA activation and GluR1 Ser845 phosphorylation are necessary 
for the rapid antidepressant action of ketamine.  
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