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Abstract
Medical treatment using high-voltage electric potential (HELP) devices to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, 
the underlying mechanisms of the potential health benefits of this therapy are not fully understood. Therefore, we investigated the lysophosphatidylethanolamine 
(lysoPE) and lysophosphatidylinositol (lysoPI) levels using selected reaction monitoring (SRM) analysis in plasma samples obtained from healthy human subjects 
before and after exposure to a single HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min). LysoPE-22:6 and lysoPE-20:4 were significantly upregulated after 
HELP exposure. However, there were no effects on the levels of phosphatidylethanolamine (PE) and phosphatidylinositol (PI), lysoPI, or other lysoPE species. 
LysoPE is known to activate G protein-coupled receptor 119 (GPR119). No X-ray crystal structure has been reported for GPR119; thus we examined the in silico 
docking simulation of lysoPE-22:6 with GPR119 using a homology model. LysoPE-22:6 showed strong interaction energy of -10.603 kcal/mol. Our findings 
provide new insight into the molecular mechanisms of the health benefits of EF therapy. 

Abbreviations: AR231453:N-(2-fluoro-4-methylsulfonylphenyl)-
5-nitro-6-[4-(3-propan-2-yl-1,2,4-oxadiazol-5-yl)piperidin-1-yl]
pyrimidin-4-amine; EF: electric field; GLP-1: glucagon-like peptide-1; 
GPR119: G protein-coupled receptor 119; HELP: high-voltage 
electric potential; lysoPC: lysophosphatidylcholine; lysoPC-22:4: 
(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-
2-hydropropyl phosphonato]oxy}ethyl)trimethylazanium; lysoPE: 
lysophosphatidylethanolamine; lysoPE-22:6: (2-aminoethoxy)[(2R)-
2-[(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)-docosa-4,7,10,13,16-hexaenoyloxy]-
3-hydroxypropoxy]phosphinic acid; lysoPE-20:4: (2-aminoethoxy)
[(2R)-2-hydroxy-3-[(5Z, 8Z, 11Z, 14Z)-icosa-5,8,11,14-tetraenoyloxy] 
propoxy]phosphinic acid; lysoPI: lysophosphatidylinositol; 
OEA: oleoylethanolamine; PE: phosphatidylethanolamine; PI: 
phosphatidylinositol; PLA2: phospholipase A2; PLC: phospholipase C; 
PLD: phospholipase D; or SRM: selected reaction monitoring. 

Introduction 
A therapeutic device to expose the human body to high-voltage 

electric potential (HELP) has been approved by the Ministry of Health, 
Labour and Welfare in Japan [1-16]. High-voltage electric field (EF) 
therapy is reported to be an effective treatment for stiff shoulders, 
headache, insomnia, and chronic constipation [1-17]. Since the discovery 
of EF therapy more than 80 years ago, its molecular mechanisms of 
health benefits have remained a mystery. Altogether, the results of these 
studies suggest that HELP exposure may present an alternative therapy 

for several conditions, although the underlying mechanisms of action 
remain elusive. Our previous attempts to find a HELP exposure-induced 
biomarker using plasma metabolomics have led to the detection of 
lipid-derived signaling molecules such as oleoylethanolamine (OEA), 
cis-8,11,14-eicosatrienoic acid, cis-4,7,10,13,16,19-docosahexaenoic 
acid, linoleic acid, 9-hydroxyoctadecadienoic acid (9-HODE), 13-
HODE, 13-hydroperoxy-octadecadienoic acid (13-HpODE), and 
3-hydroxybutyrate (3-HBA), a lipid-derived histone deacetylase 
inhibitor [12-16]. Endogenous lipid-derived signaling molecules have 
been suggested as candidate molecules representing the interface 
between symptoms and electroceutical target proteins [12-16]. A 
recent study by Hansen et al. reported that GPR119-mediated cyclic 
AMP accumulation is potentiated by OEA, 2-oleoyl glycerol (2-
AG), or lysoPE in transiently transfected COS-7 cells [18]. In our 
previous study, we observed HELP exposure-induced upregulation of 
lysophosphatidylcholine (lysoPC)-22:4 levels in the plasma of healthy 
individuals [16]. Therefore, we hypothesized that the increased plasma 
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and the lipids were separated on a Waters X-Bridge C18 (3.5 µm, 150 
mm x 1.0 mm i.d., Waters Corporation, Milford, MA, USA) at room 
temperature (25℃) using a gradient solvent system as follows: mobile 
phase A [isopropanol/methanol/water (5:1:4, v/v/v) supplemented 
with 5 mM ammonium formate and 0.05% ammonium hydroxide] 
/ mobile phase B (isopropanol supplemeted with 5 mM ammpnium 
formate and 0.05% ammonium hydroxide) ratios of 70%/30% (0 
min), 50%/50% (2 min), 20%/80% (13 min), 5%/95% (15-30 min), 
95%/5% (31-35 min), and 70%/30% (35-45 min). Flow rate was 20 
µL/min. Phospholipid species were measured by SRM in positive ion 
mode with a TSQ Vantage AM mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA). The characteristic fragments of 
individual phospholipids were detected by the product ion scan (MS/
MS mode). Chromatographic peak areas were used for comparative 
quantitation of each molecular species (e.g., 38:6, 40:6) in a given 
class of the phospholipids. The specific detection of individual lipids 
was performed using multiple reaction monitoring. Multiple reaction 
monitoring (MRM) m/z transitions were : lysoPE-22:6 = 526.3/385.3; 
or lysoPE-20:4 = 502.3/361.3.

Homology modeling and docking simulation 
We used Q8TDV5.fasta registered in UniProt for sequence 

information of hGPR119 (GP119: glucose-dependent insulinotropic 
receptor). There were eleven PDB (Protein Data Bank)-IDs of the 3D 
structure (4LDE, 4QKX, 2YDO, 5G53, 4MQS, 3P0G, 3PDS, 4IAR, 
4IAQ, 4IB4, 5TVN) that could be used as a template structure. From the 
docking calculation between OEA (an endogenous GPR119 agonist) 
and each homology model, a model (based on 4QKX) with the best 
docking score was chosen [22-23]. A template structure (PDB ID Code 
4QKX) beta-2-adrenergic receptor-T4 lysozyme fusion protein was 
modeled as target protein hGPR119. The docking study of lysoPE-22:6 
binding to the target protein of the hGPR119 model structure was 
performed using AutoDock Vina docking software (Dr. Oleg Trott, The 
Scripps Research Institute, CA, USA) [24]. The docking experiment 
was performed five times and yielded 100 candidate conformations.  

Statistical analysis

Data were analyzed using Welch’s t-test. A probability (p) value < 
0.05 was considered statistically significant. 

Results 
Effect of HELP exposure on lysoPE and PE in plasma from 
healthy humans 

We assessed lysoPE in the plasma obtained from 50 healthy 
participants using SRM analysis (Figure 1a-b and Figure 2). HELP 
exposure (9 kV/electrode + 9 kV/electrode, 30 min) resulted in 
significantly higher plasma lysoPE-22:6 and lysoPE-20:4 levels than 
pre-exposure levels (lysoPE-22:6: 1.48-fold; p = 0.032; lysoPE-20:4: 
1.42-fold, p = 0.038). Under these conditions, HELP exposure did 
not affect the lysoPE-16:0, lysoPE-18:0, lysoPE-18:1, lysoPE-18:2, 
lysoPE-20:5, or lysoPE-22:5 levels (Figure 2). 

We assessed PE in the plasma obtained from 50 healthy participants 
using SRM analysis. HELP exposure (9 kV/electrode + 9 kV/electrode, 30 
min) did not affect the PE-34:1, PE-34:2, PE-36:1, PE-36:2, PE-36:3, PE-
36:4, PE-38:4, PE-38:5, PE-38:6, PE-40:4, PE:40:5, or PE-40:6 levels (Figure 3). 

Effect of HELP exposure on lysoPI and PI in plasma from 
healthy humans 

We assessed lysoPI in the plasma obtained from 25 healthy 
participants using SRM analysis. HELP exposure (9 kV/electrode + 

lysoPC-22:4 levels following EF exposure might be linked to changes in 
lysoPE or lysoPI species. Thus, we investigated the levels of lysoPE and 
lysoPI using SRM analysis in plasma samples obtained from healthy 
subjects before and after exposure to a single HELP stimulation. Here 
we report that plasma lysoPE-22:6 and lysoPE-20:4 levels can be 
upregulated by HELP exposure (9 kV/electrode + 9 kV/electrode, 30 
min). We also conducted a binding study using AutoDock Vina docking 
software to explore the interactions of lysoPE-22:6 or lysoPE-20:4 with a 
homology model of GPR119 using the template structure (PDB ID 4QKX).  

Materials and methods
EF exposure

The system used for EF exposure has previously been described 
[12-17]. The EF system was equipped with a transformer, a seat, and 
two insulator-covered electrodes. One electrode was placed on a floor 
plate on which the subject’s feet were located and the other electrode 
was placed above the subject’s head. EF generated by the HELP 
apparatus (Healthtron PRO-18T; Hakuju Institute for Health Science 
Co., Ltd., Tokyo, Japan) was uniformly created by transforming a 50 
Hz alternating current at 18 kV (9 kV/electrode + 9 kV/electrode). The 
safety of this system for human use was established by the Japanese 
government in 1963. 

Subjects

Fifty healthy adults [21 males and 29 females; mean age, 46.5 ± 0.9 
years; mean body mass index (BMI), 21.9 ± 0.4 kg/m2] participated in 
experiment 1 (exposure condition: 9 kV/electrode + 9 kV/electrode, 
30 min). Twenty-five healthy adults [9 males and 16 females; mean 
age, 46.1 ± 1.1 years; mean body mass index (BMI), 22.2 ± 0.5 kg/m2] 
participated in experiment 2 (exposure condition: 9 kV/electrode + 9 
kV/electrode, 30 min). All experiments were performed in the morning 
and all participants signed an informed consent form after receiving 
verbal and written information about the study. All experiments 
were conducted in accordance with the Declaration of Helsinki and 
the study protocol was approved by the human ethics committee of 
Hakuju Institute for Health Science Co., Ltd. (Tokyo, Japan). 

Plasma preparation

Blood samples were collected in vacutainer tubes coated with 
ethylenediaminetetraacetic acid (VP-NA070K; Terumo Corporation, 
Tokyo, Japan) and immediately centrifuged at 800 xg for 5 min to 
separate the plasma from other cellular materials. Plasma was then 
transferred to a fresh Eppendorf tube and stored at –80℃ until 
processing.  

Phospholipid preparation

Comprehensive analysis of phospholipids was done essentially 
in the same manner as described previously [16, 19-20]. Briefly, total 
phospholipids were extracted from the plasma using the Bligh-Dyer 
method [21]. Aliquots of the lower/organic phase were evaporated 
to dryness under N2 and the residue was dissolved in methanol for 
LC-MS/MS measurements of phosphatidylethanolamine (PE) and 
phosphatidylinositol (PI).  

Mass spectrometric analyzes 

LC-electrospray ionization-MS/MS analysis was performed using 
an UltiMate 3000 LC system (Thermo Fisher Scientific, Waltham, MA, 
USA) equipped with an HTC PAL autosampler (CTC Analytics AG, 
Lake Elmo, MN, USA). A 10 µL aliquot of the lipid samples was injected 
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Figure 1. Lipidomic analysis of the plasma of healthy individuals before and after HELP exposure for 30 min.  

(a) Typical lysoPE-22:6 peak in the plasma of healthy humans. LysoPE-22:6 was detected by SRM analysis. (b) Typical lysoPE-20:4 peak in the plasma of healthy humans. LysoPE-20:4 
was detected by SRM analysis. 
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Figure 2. Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) on lysoPE in the plasma of healthy individuals. 
Relative ratio (after/before) of lysoPE in plasma before and after EF exposure. Results are presented as mean SEM (n = 50). * p < 0.05 compared with before.
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Figure 3. Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) on PE in the plasma of healthy individuals. 
Relative ratio (after/before) of PE in plasma before and after EF exposure. Results are presented as mean SEM (n = 50). 
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9 kV/electrode, 30 min) did not affect the lysoPI-16:0, lysoPI-18:0, 
lysoPI-18:1, or lysoPI-20:4 levels (Figure 4). 

We assessed PI in the plasma obtained from 25 healthy participants 
using SRM analysis. HELP exposure (9 kV/electrode + 9 kV/electrode, 
30 min) did not affect the PI-32:0, PI-32:1, PI-34:0, PI-34:1, PI-34:2, 
PI-36:0, PI-36:1, PI-36:2, PI-36:3, PI-36:4, PI-38:3, PI-38:4, PI-38:5, PI-
38:6, PI-40:4, PI-40:5, or PI-40:6 levels (Figure 5). 

Docking of lysoPE-22:6 and lysoPE-20:4 on GPR119 

LysoPE-18:1 is known to stimulate the accumulation of cyclic 
AMP by activation of human GPR119 in transiently transfected 
COS-7 cells [25]. Therefore, we hypothesized that increased plasma 
lysoPE-22:6 or lysoPE-20:4 levels after HELP exposure may be linked 
to its activation as an endogenous agonist of GPR119. We examined 
the in silico docking of lysoPE-22:6, lysoPE-20:4, lysoPC-22:4, or a 
well-known GPR119 agonist, AR231453, in the active site of GPR119 
using AutoDock Vina software [22-23, 26]. Docking results showed 
that lysoPE-22:6 has good binding energy of －10.603 kcal/mol (Table 
1). LysoPE-22:6 formed hydrogen bonds with Gln65, Arg81, Cys155, 
and Ser156 (Table 1, Figure 6a). In addition, lysoPE-20:4 showed 

strong interaction energy of －9.756 kcal/mol (Table 1). LysoPE-20:4 
formed hydrogen bonds with Ser156, Phe157, and Glu261 (Table 1, 
Figure 6b). A similar docking score was obtained using lysoPC-22:4 
instead of lysoPE-20:4 (Table 1). LysoPC-22:4 formed hydrogen bonds 
with Gln154, and Phe157 (Table 1, Figure 6c). Under these conditions, 
the potent GPR119 agonist, AR231453, showed good binding energy (
－12.409 kcal/mol) (Table 1). AR231453 formed hydrogen bonds with 
Arg81, Phe157, and Arg262 (Table 1, Figure 6d). 

Discussion 
In this study, we showed that lysoPE-22:6 and lysoPE-20:4 are 

sensitive to acute EF exposure in healthy human subjects. Notably, 
the absence of a lysoPI response indicates that lysoPE-22:6 and 
LysoPE-20:4 responses are not adverse nonspecific actions on 
the membrane lipids. The molecular mechanisms of the changes 
in lysoPE-22:6 and lysoPE-20:4 levels following EF exposure are 
complex and can be interpreted in several ways. We have previously 
shown an acute EF exposure (9 kV/electrode + 9 kV/electrode, 30 
min)-induced increase of approximately 1.51-fold and 1.41-fold for 
cis-4,7,10,13,16,19-docosahexaenoic acid (FA-22:6) and arachidonic 
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Figure 4.  Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) on lysoPI in the plasma of healthy individuals. 
Relative ratio (after/before) of lysoPI in plasma before and after EF exposure. Results are presented as mean SEM (n = 25). 
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Figure 5.  Effect of HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min) on PI in the plasma of healthy individuals. 
Relative ratio (after/before) of PE in plasma before and after EF exposure. Results are presented as mean SEM (n = 25). 
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Ligand Docking score (kcal/mol) Interactive residues
LysoPE-22:6 -10.603 Gln-65, Arg-81, Cys-155, and Ser-156
LysoPE-20:4 -9.756 Ser-156, Phe-157, and Glu-261
LysoPC-22:4 -9.823 Gln-154, and Phe-157
AR231453 -12.409 Arg-81, Phe-157, and Arg-262

Table 1. Docking score and key interacting residues of GPR119. 

a b

c d

Figure 6. In silico molecular docking of lysoPE-22:6, lysoPE-20:4, lysoPC-22:4, or AR231453 with GPR119. 
(a) Binding mode of lysoPE-22:6 in homology modeling of GPR119. Cyan represents lysoPE-22:6 and white represents the amino acid making up the pocket. The yellow dashed line 
indicates hydrogen bonding, and the hydrogen bonding partner amino acid is represented by magenta. The phosphoryl ester moiety of lysoPE-22:6 forms a hydrogen bond with the side 
chain of Glu65 and Ser156. The carboxyl of the ester moiety of lysoPE-22:6 forms a hydrogen bond with the carboxyl in the main chain of Cys155. The carboxyl of the ester moiety of 
lysoPE-22:6 forms a hydrogen bond with the side chain of Arg81. (b) Binding mode of lysoPE-20:4 in homology modeling of GPR119. Cyan represents lysoPE-20:4 and white represents 
the amino acid making up the pocket. The yellow dashed line indicates hydrogen bonding and the hydrogen bonding partner amino acid is represented by magenta. The phosphoryl ester 
moiety of lysoPE-20:4 forms a hydrogen bond with the hydroxyl group in the side chain of Ser156 and the nitrogen in main chain of Phe157. The primary amine at the tip of lysoPE-20:4 
forms a hydrogen bond with the carboxylic acid moiety of Glu261. (c) Binding mode of lysoPC-22:4 in homology modeling of GPR119. Cyan represents lysoPC-22:4 and white represents 
the amino acid making up the pocket. The yellow dashed line indicates hydrogen bonding and the hydrogen bonding partner amino acid is represented by magenta. The phosphoryl ester 
moiety of lysoPC-22:4 forms a hydrogen bond with the side chain of Gln154. The ester moiety of lysoPC-22:4 forms a hydrogen bond with the nitrogen in the main chain of Phe157. (d) 
Binding mode of AR231453 in homology modeling of GPR119. Cyan represents AR231453 and white represents the amino acid making up the pocket. The yellow dashed line indicates 
hydrogen bonding, and the hydrogen bonding partner amino acid is represented by magenta. The orange dashed line indicates π-π interaction, while the red dashed line indicates cation-π 
interaction. The nitrogen atom in the pyrimidine ring of AR231453 forms a hydrogen bond with the guanidyl group of Arg81 and the benzene ring of Phe157 interacts with the pyrimidine 
ring by π-π. The oxadiazole group of AR231453 and the guanidyl group of Arg262 interacts with cation-π. 

acid (FA-20:4), respectively [12]. Notably, Thuren et al. reported that 
phospholipase A2 (PLA2)-catalyzed hydrolysis is elevated by EF [27]. 
PLA2 enzymes hydrolyze the ester of glycerophopholipids to release 
lysophospholipids and a free polyunsaturated fatty acid [28]. We have 
shown that PLD-mediated breakdown product ethanolamine and PLC-
mediated breakdown product ethanolamine phosphate do not change 
by EF exposure (9 kV/electrode + 9 kV/electrode, 30 min) [12]. Thus, 
it is reasonable to speculate that EF exposure upregulates lysoPE-22:6 
and lysoPE-20:4 through the activation of PLA2. In particular, 
understanding the nature and molecular regulation of potential 
anti-inflammatory PLA2 is important for alleviating the chronic 
inflammation in various intractable diseases such as rheumatoid 
arthritis, inflammatory bowel disease, Crohn’s disease, and Alzheimer 
disease [29-32]. We found that OEA induces marked upregulation in 

group IID secretory PLA2 expression in human subcutaneous cultured 
adipocytes [12]. In the future, it will be of interest to identify the 
sensitive PLA2 subtype induced by EF exposure. 

Another goal of the present study was to gain insight into the 
molecular mechanisms of the health benefit provided by EF therapy. 
Interestingly, Hansen et al. reported that lysoPE-18:1 increases the 
intracellular concentration of cyclic AMP in GPR119-expressing COS-
7 cells [25]. Unfortunately, there lysoPE-22:6 and lysoPE-20:4 are not 
commercially available as pure chemical reagents for pharmacological 
experiments. Thus, it will take some time for us to investigate the 
effects of lysoPE-22:6 and lysoPE-20:4 on the accumulation of cyclic 
AMP levels in HEK293T or CHO-K1 cells stably expressing human 
GPR119. An increasing number of reports on virtual simulation have 
appeared in the literature [16, 33-34]. In silico molecular docking 
studies have been used to support the pharmacological results. 
However, no crystal structure has been reported for GPR119. Thus, we 
focused on homology modeling of GPR119. In the present study, the 
docking simulation showed that lysoPE-22:6 or lysoPE-20:4 can bind 
to GPR119. LysoPE-22:6 binding to GPR119 was found to be stabilized 
through the formation of hydrogen bonds with Gln65, Arg81, Cys155, 
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and Ser156, and lysoPE-20:4 binding to GPR119 was found to be 
stabilized through the formation of hydrogen bonds with Ser156, 
Phe157, and Glu261. Interestingly, a previous study examining binding 
pockets using a homology model (PDB ID 2RH1) of GPR119 reported 
hydrogen bonds to Phe157 [35]. In the future, it will be of interest to 
identify the binding pocket of lysoPE-22:6 and lysoPE-20:4 in human 
GPR119 using the crystal structure. 

We recently found, using human metabolomics and lipidomics, 
that the increase in plasma OEA and lysoPC-22:4 levels is elicited 
by EF exposure [12, 16]. Moreover, we reported that EF exposure 
induces a transient increase of glucagon-like peptide-1 (GLP-1) levels 
in plasma [13]. Considerable evidence for GLP-1 secretion induced 
by endogenous agonists of GPR119 containing OEA, lysoPC, or 
lysoPE has been obtained from studies of intestinal enteroendocrine 
L-cells [23, 36-37]. It is thus reasonable to speculate that EF exposure 
activates GLP-1 secretion through the activation of GPR119. 
However, it is unclear at the present whether the changes in GLP-1 
levels are controlled individually or all together by OEA, lysoPC-22:4, 
lysoPE-20:4 or lysoPE-22:6. 

A recent study showed that GLP-1 can influence brain neuronal 
activities in the nucleus of the solitary tract via an alternative pathway 
such as the gut-to-brain-to-periphery axis [38-39]. Campolongo et al. 
reported that post-training peripheral administration of OEA enhances 
memory consolidation in spatial learning behavior [40]. These effects 
of OEA are blocked by infusion of lidocaine into the nucleus of the 
solitary tract [40]. Interestingly, Yanamoto et al. reported that EF 
exposure (5h/day for 3 weeks) induces improved performance in the 
Morris water maze tasks in a mouse model of infarct lesions [41]. Thus, 
it is reasonable to speculate that EF exposure facilitates spatial learning 
and memory function via the gut-to-brain-to-periphery axis. Further 
studies are needed to clarify the central players in the gut-to-brain-to-
periphery axis signaling pathways induced by EF exposure. 

In conclusion, acute EF exposure exerted marked effects on plasma 
lysoPE-22:6 and lysoPE-20:4 levels in healthy subjects, and in silico 
docking of lysoPE-22:6 and lysoPE-20:4 was observed in the homology 
model of GPR119. Our findings provide insight into the molecular 
mechanisms behind the health benefits induced by the HELP device.
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