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Abstract
For the past 40 years, our challenge has been finding a solution for the treatment of brain tumors using our knowledge of the evolution of life, the chemistry of 
proteins, genetics, and molecular biology. Efficient strategies were established by the construction of vectors targeting oncoproteins or growth factors (i.e. IGF-I, 
AFP) present during the development of the embryonic and fetal nervous system tissues originating from neural stem cells. The neoplastic stem cells, PCC3 and 
PCC4, derived from mouse teratocarcinoma – tumor mimicking the structures of developing central nervous system - were transfected with the vectors expressing 
either antisense IGF-I RNA or IGF-I RNA forming a triple helix RNA-DNA. Both approaches completely stopped the synthesis of the IGF-I growth factor and 
converted the stem cells into immunogenic cells expressing MHC-I and B7. The immunogenic anti IGF-I transfected cells became antitumor vaccines. The role 
played by stem cells in the nervous system has motivated us in the search for knowledge focused on self-regeneration and therapeutic strategies. The strategy of Anti 
IGF-I vaccines was applied with success for therapy of glioblastoma. 

Introduction 
The brain is plastic and self-regenerative. In neurogenesis: 

totipotential immature cells – neural stem cells (NSC) exist in the 
hippocampus and ventricles, they multiply and undergo differentiation 
and maturation and settle in the brain site where they activate a 
process of multiple connections (synapses) in their new environment, 
a process called synaptogenesis. The stem cells of the nervous system, 
NSC, produce an important impact in the search for new knowledge 
in brain histology, physiology and pathology, including the neoplastic 
mechanism and anti-tumor strategy solutions [1-5]. 

Neurogenesis takes place in the brain when NSC generate new 
functional neurons and glia considering they are multipotent cells, with 
the ability to produce different neural lineages [1,6]. This process begins 
during foetal development and persists in adult life thanks to NSC 
present in the subventricular zone (SVZ) [7,8] and the sub granular 
zone (SGZ) of the dentate gyrus of the hippocampus [9]. Neurogenesis 
is affected by different aspects of diet [10], exercise [11] and sleep [12] 
due to the association with increased production of Brain-derived 
neurotrophic factor (BDNF) or in the expression of genes necessary for 
proliferation and differentiation of NSC. 

Development of NSC is related to insulin-like growth factor 1 and 
its receptor (IGF-1R); considering that is the convergence between an 
embryonic and tumor development, the IGF-I and its receptor was 
proposed as a target to treat the progression of the glioblastoma tumor 
[13,14]. The objective of this review is to describe the NSC in adults, as 
well as a relationship between IGF-I, IGF-1R and NSC implied during 
postnatal life development. Moreover, the use of IGF-I and IGF-IR as a 
target in immunogene therapy of glioblastoma will be also considered. 

Mother cells of the nervous system - Neural stem cells 
The studies of Ramón y Cajal surprised the world when they 

demonstrated for the first-time time the complexity of the microscopic 
neuronal components. Some of their conclusions supported the 
concept that we are born with a certain number of neurons that 
remains constant, and then many of these cells die during the course 
of life, due to an apoptotic process, damage to the endothelium  of 
cerebral vessels or hyperlipidemia. The neurology studies established, 
for more than 100 years, the dogma that the brain of an adult remains 
stable, without additive changes in the number of neurons, with a 
power of processing and memory in irreversible involution, given by 
a decrease in the neuronal population over time. Humanity adapted to 
this concept of progressive deterioration, contributing to intellectual 
unproductivity. In the decade of the 90s, the advances in electron 
microscopy and molecular biology have changed that paradigm: the 
existence of totipotent stem cells (NSC) and their multiplication was 
demonstrated in the hippocampus and ventricles during differentiation 
process. Moreover, the relation between differentiation process and the 
growth factors responsible for neuronal maturation, self-regeneration, 
synaptogenesis, and cerebral plasticity. The latter allows to assume 
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the functions of neurons affected by injury or disease, permitting 
the restoration of impaired functions. A review of information on 
the Neural Stem Cells, NSC, is carried out since 2002 year when the 
paradigm of the existence and reproduction of neural stem cells is 
consolidated through new evidence [15,16]. 

As far as history of nervous system description is considered, 
Santiago Ramon y Cajal described first the central nervous system 
(CNS) and neurons in details. In 1965 Altman evidenced that in adult 
rat’s hippocampus exist neurogenesis in the granule cells zone (SGZ) 
of the dentate gyrus [17] , and also in the ventricular subventricular 
zone (V-SVZ) of the lateral ventricles [7,18]. The V-SVZ have 4 types 
of cells: type A cells are neuroblast, type B1 and B2 are astrocytes, type 
C cells are proliferative precursors, and type E cells are ependymal 
cells [7,8] admitting that only type B1 have characteristics of NSC. 
Type B1 cell has end feet on blood vessels. This cell is characterized by 
glial markers such as glial-fibrillary acidic protein (GFAP), glutamate 
aspartate transporter (GLAST), and brain lipid-binding protein (BLBP) 
[8,19] . When B1 cells proliferate, they produce asymmetric division to 
produce type C cells and renew themselves [20,21]. After production 
of type C cells, they divide again and produce neuroblast or type A 
cells. The last ones then proliferate and migrate to the rostral migratory 
stream (RMS), that leads to the olfactory bulb (OB) [22] where they 
become GABAergic inhibitory interneurons [7,23] . 

As to the role of the dentate gyrus (DG) composed by different 
layers, one of them is the sub granulate zone (SBZ) where the NSC are 
concentrated [24]: parvalbumin - expressing interneurons regulate the 
states of NSC by GABAergic inputs [25], because these interneurons 
keep constant stimuli of GABA leading to hyperpolarization. When 
this impulse decrease, NSC transform themselves and become neural 
progenitor cells, following further transformation into granule cells 
and integrate the hippocampus circuitry [26]. Different factors 
influence neurogenesis, that leads NSCs present in the DG and SBZ to 
astrogliosis, neurogliosis and vascular remodelling [27-28].

The DG aging generates a more active state of NSC, but decreases 
the proliferation of NSCs and moreover produces in the OB a 
reduced response to epidermal growth factor signaling [29]. As far as 
decreasing of NSC is considered, in the experiment of Villeda et al., it 
was demonstrated that in young mice inoculated with old mice blood 
it exists a soluble molecule leading to decrease proliferation of NSC, 
for example CCL11 (also known as exotoxin) [30]. On the other side, 
there is also an evidence about the increase of TGF and IL-6 generating 
a pro-inflammatory state [30]. 

There are different mechanisms explaining neurogenesis and 
human cognitive functions including an increase in neurotrophic 
factors (BDNF and IGF-1) [31-33] reducing the time of cell cycle in 
S-phase [34,35], preventing the death of new neurons or their relation 
with angiogenesis [36]. 

Among different factors affecting neurogenesis [37], the 
immunologic factors play an important role in development of NSC and 
neurogenesis during adult life, especially cytokines like interleukin-1 
(IL-1) [38], tumor necrosis factor alpha (TNF-α) [39], interleukin-
6(IL-6) [40], interferon gamma (IFN- γ) and leukemia inhibitory factor 
(LIF) [41-43]. Related to immune mechanism Insulin-like growth 
factor-1 (IGF-I) is a polypeptide of 70-amino-acid [44] playing a role 
in normal NSCs by inducing differentiation, proliferation or survival of 
neurons in SVZ and DG [45,46,47]. IGF-I activates genes like RIT-1 to 
produce Ras-related GTPase and increase proliferation of hippocampal 
neural stem cells (HNSCs) [48-50]. Besides that, it helps a maturation 

process of transformation NSCs into neurons, which are integrated in 
dendritic trees [51]. Moreover, it helps in the SVZ, a migration of the 
NSCs to the olfactory bulb [52,53]. Also the variants of the IGF-1 like 
MGF induce neurogenesis in DG and in SVZ [54]. 

Autoregeneration of CNS 
In the 2000s, Fred H. Gage described some of the advances in 

neuroscience in recent years [55-57]. It was discovered that the brain 
changes throughout life, originating new neurons and their respective 
synapses with neighboring cells. Self-regeneration and plasticity allow 
them to repair themselves in the period after an injury or illness, and 
adapt to a series of circumstances in which an extra capacity is required, 
there being the possibility of potentiating the brain in its thinking 
capacity (see references below). The use of drugs that stimulate the 
brain to replace its own cells (neurogenesis) and reconstruct damaged 
neuronal circuits are new perspectives that constitute alternatives to 
the old use of neurotransmitters and cell transplantation in cases of 
Parkinson's, Huntington's or spinal cord injury, which have resulted 
poor. Moreover, the discovery has concerned the phenomenon of 
appearance of new neurons in the brains of adult birds and non-
human primates and humans, giving the phenomenon the name of 
neurogenesis. They found totipotent stem cells that divide periodically, 
producing other stem cells, new neurons, support cells or glia, and 
located predictively in the ventricle, hippocampus and olfactory bulb. 
Whether they are neurons with their respective synapses or glial cells, 
depends on the site of the brain where they arrive and on their activity, 
that occurs at the moment of arrival. It takes 1 month, from the moment 
the new neuron is formed until it becomes a functional cell capable of 
receiving and sending information. Neurogenesis is a highly controlled 
complex process; the transformation of totipotent cells in neurons or 
glia is regulated by the action of the Neurotropic Factor of the Brain 
and the Factor Similar to Insulin: brain-dependent neurotropic factor 
(BDNF) keeps neurons alive; the ciliary neurotropic factor (CNTF) 
protects neurons from death; neurotropin-3 (NT-3) promotes the 
formation of oligodendrocytes; GDNF), potentiates the motor neurons 
to form new branches; epidermal growth factor, EGF, an inducer of 
the division of brain stem cells and fibroblast growth factor, FGF, in 
low doses keep alive several types of cells; Glial-2 (GGF-2) stimulates 
beneficial glial production; Insulin-like Growth Factor - 1, stimulates 
the birth of neurons and glia cells; FGF and EGF participate in the 
neurogenesis of the hippocampus to reconstruct the necrotic tissue 
after vascular accidents; FGT and presenilin increase neurogenesis in 
Alzheimer to reverse the disease. Fred H. Gage has proposed that the 
following events occur in neurogenesis: Stem cells are the source of 
new cells. They are periodically divided into 2 main areas: the ventricles 
which contain the spinal brain fluid (CSF) and the hippocampus, 
a crucial structure for learning new information and memory. The 
hippocampus, by producing new neurons, conditions the formation of 
connections between existing and new neurons, increasing the brain's 
ability to process and record

new information. The mother cells proliferate producing other 
daughter mother cells and neuronal precursors, which, in turn, some 
will become neurons but others in support cells (astrocytes andoligo 
dendrocytes, glial cells). The newly formed daughter stem cells move 
away from their progenitors and migrate to the olfactory bulb where 
50% will differentiate into neuronal cells. In the adult brain, newborn 
neurons have been found in the hippocampus and in the olfactory 
bulb. Researchers are hopeful to be able to induce cerebral self-repair, 
stimulating the multiplication of NSCs and the synthesis of neural 
precursors and their subsequent maturation and specialization in 
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mature neurons that establish several synapses with other neurons in a 
determined site, where necessary [6,25,32,36,46,55-60]. 

Stem cells, neural and glial cells in neoplasia: 
Therapeutic implications 

The stem cells of adult CNS can produce new neurons and cells of 
the glia: the embryogenic stem cells, isolated in human embryos of only 
100 cells, can generate any type of cells of the body [6,25,55,56]. These 
stem cells can be cultured, multiplied and then transplanted into the 
Central Nervous System of an adult animal. They survive successfully 
in the hippocampus and olfactory bulbs and differentiate into mature 
neurons. If they are placed in another place they do not differentiate in 
neurons but in glial cells. 

In 1979, the first description of the development of the central 
nervous system using a new marker, alpha-fetoprotein, was made 
using a rat brain fetal model [61]. Using the same marker, a neoplastic 
model of CNS development in mouse teratocarcinoma, derived from 
stem cells PCC3 and PCC4, was described [62]. The comparison of 
the results obtained in two models, showed that there is a convergence 
between embryonic fetal development and neoplastic development. Is 
AFP a perfect antigen for targeting malignant CNS tumor?. Taking into 
account that AFP is present not only in glial but also in neuronal cells 
of differentiation, which limits its useful for differentiational diagnosis 
and therapy of glial and neuronal derivatived tumors. Fortunately, a 
new oncoprotein, the growth factor IGF-I, presented only in glial cells 
of normal or neoplastic development, but absent in neuronal cells, was 
considered for therapeutic purpose [63,64]. IGF-I is considered as the 
most important growth factor of normal and neoplastic development, 
including CNS [65]. Logically, to stop the neoplastic development, the 
arrest of the synthesis of IGF-I in cancer cells of glioblastoma, in the 
"source" at the level of transcription or translation was considered, 
using antisense [66–68] or triple helix [69,70] technology. 

The translation level of IGF-I was targeted in glioma malignant 
cells by antisense approach using a vector expressing antisense IGF-I 
RNA [64]. This technology has yielded positive results in vitro, 
stopping the synthesis of IGF-I in glioma cell cultures, and in vivo, 
stopping the neoplastic development of the tumor [71]. This strategy 
has given historically the birth of a new oncology domain - cancer 
gene therapy [72]. The injection in vivo of transfected anti – gene 
(antisense or triple helix) anti IGF-I cells either into animals carrying 
teratocarcinoma tumors derived from stem cells PCC3 and 4, or into 
glioma rat tumors using also transfected cells, or applied in the clinical 
treatment of patients with glioblastoma, has induced an antitumor 
immune response mediated by TCD8 + cells [71,73-75]. 

We illustrate below the efficiency of molecular biology applying 
anti – gene strategy targeting the IGF-I in the model of mouse 
teratocarcinoma derived of stem PCC3 and PCC4 embryonal 
carcinoma stem cells (the technique of transfection of PCC stem cells 
using either antisens or triple helix vectors [73,74] (Figures 1 – 8). We 
need to add, that an equal to the genetically modified PCC stem cells, 
does not exist in nature. 

The proposed mechanism of anti – gene (antisense or triple helix) 
therapy concerns the growths factors and their receptors (IGF-I, TGF-
beta, EGF, IGF-I-R, EGF-R)	 – a combination of an increased anti-
tumor immune response (CD8 +), and an inhibition of the transduction 
pathway of the PI3K / AKT / GWK3 / GS signal that is involved in the 
transformed phenotype of the tumor [76 ]. In glioblastoma, glial tumor 
cells proliferate, forming rapidly growing tumors. How these cells 

Figure 1. Teratocarcinoma structures resulted of injection into 129 mice of stem 
cells – PCC3 embryonal carcinoma cells. (left) Neuroepithelial rosette surrounded by 
neuroepithelial cells, HE, x250; (middle) Higher magnification of the same poorly 
differentiated neuroepithelial rosette, x400. (right) More advanced step of neuroepithelial 
differentiation showing a cyst of nervous origin ‘’pathological neural tube’’. The wall of 
the cyst as well its neighborhood is constituted by the same type of neuroepithelial cells. 
Neuroepithelila cells surrounding the cyst present a character of neurospongium, HE, x250 .

Figure 2. Teratocarcinoma resulted of injection of stem cells, PCC3 cells, showing an 
intermediate step of cyst differentiation (bottom down) if compared to two structures 
presented in figure 1. The differentiating neuroependymal tube and groups of cellas arranged 
in clusters (arrow) are labelled with antibodies anti AFP, Immunoperoxidase, x250. 

Figure 3. Teratocarcinoma resulted of injection of stem cells - PCC3 embryonal carcinoma 
cells. Sequence of maturation of neuroepithelial structures showing steps of differentiation: 
1. In differentiated; 2. Poorly differentiated (rosette); 3. Moderately differentiated; 4. Well 
differentiated, immature - embryonic form); 5. Well differentiated, immature – fetal form; 
6. Well differentiated, mature. End points of AFP staining shows maximum in the steps 3 
and 4; AFP is absent in steps 1 and 6. 

originate from the mother stem cells cells induced by the elements that 
regulate their division, would be promising for this pathology. 

IGF-I is considered to play a principal roll in tumorigenesis [65] 
and especially in glioblastoma - the most common primary brain 
tumor in adults [77] , with a prognosis for survivals below 1 year, 
and only in 5-10% cases below 2 years [78]. In this tumor, as well as 
in teratocarcinoma derived of PCC stem cells, the IGF-I and insulin 
increases proliferation by different signalling pathways, promoting cell 
growth of glioblastoma [79]. By the way, the clinical epidemiologic 
studies evidenced an increase mortality rate in patients treated with 
insulin [80], underlying the supplement data of signal transdution 
pathway of IGF-I playing a role in risk factor of the cancer development 
[79, 81]. A serum level of IGF-I is higher in glioblastoma patients [82], 
and tumor tissues present an increased IGF-I and insulin receptors 
levels compared to normal tissue [83] inducing the proliferation, 
differentiation and migration of tumor cells [83,84]. The mechanism of 
mutation in p53 inducing up-regulation in IFG-I receptor, and for the 
same reason a survival of cancer cells, can play also a role [85]. 



Bueno SJ (2018) Brain stem cells and IGF-I: implications in development, regeneration and cancer therapeutics

Volume 5(1): 4-7Integr Mol Med, 2018     doi: 10.15761/IMM.1000319

Figure 4. Schema of Antisense and Triple helix technology to arrest Growth Factor, GF. In 
antisense technology the end result is the inhibition of GF mRNA (sense RNA) activity by 
binding to the antisense RNA. In GF triple helix technology, the oligopurine third strand 
(23bp) forms RNA-DNA triple helix with GF gene.

Figure 5. Schema of preparation of pMT/EP vector for IGF-I antisense and IGF-I triple 
helix technology. 

Figure 6. Construction of antisense and triple helix vectors. In antisense technology cDNA 
in antisense orientation is inserted: the episomal vector express antisens IGF-I RNA. In 
triple helix technology the 23 bp RNA prepared by PCR is inserted: the episomal vector 
express 23 bp RNA forming triple helix with genomic DNA as follows: 
AGAAGAGGGAGAGAGAGAAGG  -- oligopurin poli A 3’ AGAA 5’ cap
***************************** 
 AGAAGAGGGAGAGAGAGAAGG 
 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII  -- genomic DNA 
 TCTTCTCCCTCTCTCTCTCTCC   
***Hoogsteen bonds 
III Watson-Crick bonds

New or proposed therapies of glioblastoma are based either on 
immune treatment or on immuno-gene strategies [86], including 
inhibitors [87], and the anti – gene strategy [66-70,88]. The last approach 
has permitted us to establish new and successful gene therapy strategies 
targeting glioma’s growth factors and have now been introduced into 
clinical trials (the median survival of patients has reached 2 years, and 
in some cases 3 or 4 years) [89]. 

Other AS approaches targeting TGF-beta or VEGF, their receptors 
and their down stream transduction signaling elements [90-92], appear 
to offer hope for a promising solution. The recent neuro-oncology 
research underlines a focus on the role of the PI3K/AKT pathway in 
glial cells: the simultaneous arrest of at least two links either IGF-I 
or TGFbeta or VEGF and GS, of the pathway TK/PI3K/AKT/GSK3/
GS [92-94] seems to be in line for a future clinical gene therapy trial 
strategy for treatment of GBM. 

Other recently introduced technologies include potentially useful 
siRNA [95,96] and miRNA (microRNA) [97]. The role of 21-23 mer 
double-stranded RNA (si RNA) in the silencing of genes is strongly 
similar to that of the TH DNA mechanism, which also involves 23 
mer RNA [70]. As to miRNAs, they may play a fundamental role in 
tumorigenesis, controlling cell proliferation and apoptosis; in gliomas, 
the miRNA (microRNA-21) level has been reported to be elevated [98]. 

New horizons: Stem cells of SNc and learning
Synaptogenesis plays an important role in learning and memory. 

It takes a month to move from newly formed daughter stem cells to 
the integration of daughter cells in a brain circuit and connect with 
existing ones, forming synapses. In the process of synaptogenesis, the 
dendrites of one neuron are contacted with the axon of another neuron. 
Dendritic spines change their shape in minutes. In his article Fred Gage 
informs us: "Exercises, physical activity, experience, can regulate the rat 
of neurogenesis in the hippocampus, the subsistence of newborn stem 
cells neurons and their ability to integrate into the existing neuronal 
circuit "[56]. Henrieth van Praag has showed that a mouse exercised 
on a rotating ring can double the number of dividing stem cells in the 
hippocampus [99,100]. 

Concerning the mechanism of memory, scientists investigate 
small molecules that can stimulate genes that produce growth factors. 
Another possibility is to use a gene therapy and cell transplantation. 
These technics could permit to increase a cellular production of growth 
factors by genetic manipulation followed by the implant of these cells 
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Figure 7. Mechanism of immunogene therapy. After transfection in vitro of stem cells - 
PCC3 embryonal carcinoma cells, using Antisens IGF-I vector, the cells stop to synthesize 
IGF-I, and become immunogenic, expressing MHC-I and B7 antigens. One part of cells 
enter in apoptosis Celulas “antisentido” (anti IGF-I). The injection of these transfected 
cells into animal induce anti tumor immune response mediated by CD8 lymphocytes. 
[87,93]. Abreviaturas: TAP 1,2: transporter associated withantigen processing antigen); TK: 
tyrosine kinase; PI3K: phosphatidyinositol 3 kinase; PDK1: phosphoinositide-dependent 
kinase 1; AKT: PKB, protein kinase B; Bcl 2: key molecule of apoptose; GSK3: glycogene 
synthetase kinase 3; GS: glycogene synthetase; PKC: protein kinase C. 

Figure 8. (Up) Lesions resulting from injection of PCC3 cells expressing antisense IGF-I 
RNA (left and middle) and antisense IGF-II (right) into 129 SV mice. (left) Lymphocyte 
infiltration, HE, x80; (middle) serial section stained with anti CD8 antibodies, x80. (right) 
Mature epidermoid structure accompanied by a sheet of dark neuroepithelial cells, HE, 
x125. (Down) Tumor regression induced by injection of antisense IGF-I expressing PCC3 
transfected cells. (left) Teratocarcinoma 4 days following transfected PCC3 cells in hection, 
showing embryonal carcinoma cells (open arrow), neuroblastic cells arranged in pseudo 
rosettes (star), and nervous-system derived cells scattered about blood vessel (broken 
arrow), HE, x110. (middle) Serial section stained with anti CD8 antibodies, x110. (right) 
Teratocarcinoma 9 days following transfected cell injection, showing embryonal carcinoma 
cells and pseudo rosettes of neuroblastic cells (star), and disentegrating and necrotic tissue 
(black circle), HE, x110.

Environment stimulates neurogenesis in the ventricles and the 
hippocampus, the migration of stem cells and neuronal precursors to 
the olfactory bulb. Then the stem cells ‘travel’ to specific sites within 
the brain where synaptogenesis will occur, participating in events that 
generate plasticity and capacity for self-regeneration and brain self-
repair. Ratey tells us that "aging is inevitable, a serious loss of memory 
is not" [101]. Several factors can delay the onset of memory impairment 
in Alzheimer's and senile dementia; there are, among others, following 
subjects in current research:the ingestion of antioxidants such as 
vitamin E and Celegeline, nonsteroidal anti-inflammatory drugs, 
Aspirin and Ibuprofen, vitamin B 12, ingestion of Carnitine. Ginkgo 
biloba has not been shown to have favorable effects on neurogenesis, 
but it can increase blood flow and cerebral oxygenation [16,56,99-106]. 
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