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Abstract
Exposure to high sugar diet (HSD) is an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. In Drosophila, HSD-
induced IR delays emergence of pupae from larvae and eclosion of imago from pupae. Understanding of mechanisms of IR/T2D is essential for refining T2D 
prevention and treatment strategies. Dysregulation of tryptophan (Trp)-kynurenine (Kyn) pathway was suggested as one of the mechanisms of IR/T2D development. 
Rate-limiting enzyme of Trp-Kyn pathway in Drosophila is Trp 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. We previously 
reported attenuation of HSD-induced IR in vermilion mutants with inactive TDO. Conversion of Trp to Kyn is regulated not only by TDO activity but by 
intracellular Trp transport via ATP-binding cassette (ABC) transporter encoded by white gene in Drosophila. In order to evaluate the possible impact of deficient 
intracellular Trp transport on the inducement of IR by HSD, we compared the effect of HSD on pre-imago development in wild type flies, Canton-Special (C-S), 
and C-S flies containing white gene, white (C-S). Presence of white gene attenuated (by 50%) HSD-induced delay of pupae emergence from larvae and female and 
male imago eclosion from pupae. Present study together with our earlier report reveals that both decreased TDO activity (due to vermilion gene mutation) or deficient 
Trp transport into cell without affecting TDO levels (due to white gene mutation) attenuate HSD-induced development of IR in Drosophila model of T2D. Our data 
provide further support for hypothesis that dysregulation of Trp-Kyn pathway is one of the pathophysiological mechanisms and potential target for early diagnosis, 
prevention and treatment of IR/T2D.

Introduction
Diabetes mellitus is a public health problem, which affects a 

millions worldwide. Most diabetes cases are classified as type 2 diabetes 
mellitus (T2D), which is highly associated with obesity [1]. Impaired 
glucose tolerance (pre-diabetes) is a high-risk factor for T2D [2]. 
Insulin resistance (IR) is associated with prediabetes before T2D could 
be diagnosed. Further elucidation of IR mechanisms is needed for 
prevention and treatment of T2D. It was suggested that dysregulation 
of kynurenine (Kyn) pathway of tryptophan (Trp) metabolism is 
one of the mechanisms of development of IR/T2D [3-8]. We found 
IR correlation with activity of Trp-Kyn pathway in Hepatitis C virus 
(HCV) patients [9], and elevation of plasma concentrations of Kyn 
downstream metabolites in T2D patients [10]. Experimental model of 
T2D was established in Drosophila melanogaster [11]. There are four 
distinct stages in the life of flies: egg, larva, pupa, and imago (adult). 
High sugar diet (HSD) induces IR in larva and T2D in imago [12]. IR 
delays emergence of pupae from larva and imago eclosion from pupae 
[13]. In Drosophila, tryptophan 2,3-dioxygenase (TDO), enzyme, 
catalyzing formation of Kyn (via N-formyl-kynurenine) from Trp, 
is encoded by vermilion gene [14]. We found attenuation of HSD-
induced development of IR in vermilion mutants with inactive TDO 
[15]. TDO is substrate-activated intracellular enzyme. Therefore, 
conversion of Trp to Kyn is regulated not only by TDO activity but by 
Trp transport into cells as well [16]. Import of Trp into cell is mediated 
by ATP-binding cassette (ABC) transporters encoded by white gene in 
Drosophila. White mutations do not alter levels of TDO, but interfere 
with the ability of cells to take up Trp [17]. Therefore, mutations of both 

TDO (vermilion) and ABC transporter (white) genes have a similar 
effect, i.e., decreased formation of Kyn from Trp. In order to evaluate 
the possible impact of impairment of intracellular Trp transport on 
the inducement of IR by HSD, we compared the effect of HSD on pre-
imago development in wild type flies, Canton-Special (C-S), and C-S 
flies containing white gene, white (C-S). 

Materials and methods 
Flies from C-S the collection of V.N. Karazin Kharkiv National 

University were used in the study. Wild type Drosophila melanogaster 
and white (C-S) mutants flies were maintained at 23°C in a 12:12 light: 
dark period on a standard nutrition medium consisting of sugar, yeast, 
agar and semolina. Experimental eggs were obtained from parents with 
synchronized egg laying. Before eggs laying sucrose (0.67M) was added 
to nutrition medium. Emerging time was taken as the period from the 
time of synchronized egg laying to the time of larvae emergence into 
pupae as described elsewhere [15]. Appearance of female and male 
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imago from pupae was recorded as time of eclosion. The study was 
carried out in November and December 2015. 

Statistical analysis

Data were expressed as mean+standard deviation (hours of pupae 
emergence and imago eclosion). Differences between experimental 
groups were evaluated by Mann Whitney, two-tailed test. 

Results 
Pupae emergence from larva

Emergence time of C-S wild type flies maintained on standard 
nutrition medium was 7% shorter than emergence time of white (C-
S) mutants (p<0.0001) (Table 1). HSD delayed pupae emergence from 
larva of wild type flies, C-S, in comparison with flies maintained on 
standard nutrition medium by almost 3 days (40%). In white (C-S) 
mutants HSD delayed pupae emergence from larvae by 1.6 days (20%) 
in comparison with flies maintained on standard nutrition medium. 
Therefore, presence of white gene attenuated HSD-induced delay of 
pupae emergence from larvae by 50% (Table 1).

Imago eclosion from pupae

There was no significant gender effect on imago eclosion time 
(Table 2). Eclosion times of both female and male C-S wild type flies 
maintained on standard nutrition medium were about 8% shorter than 
eclosion times of white (C-S) mutants (p<0.0001). HSD delayed imago 
eclosion in C-S flies in comparison with flies maintained on standard 
nutrition medium by 2.75 days (20.5%) in females and by 2.60 days 
(19.8%) in males. HSD delayed imago eclosion in white (C-S) mutants 
by 1.3 days (9%) days in females and by 1 day (7%) male flies. Therefore, 
presence of white gene attenuated HSD-induced imago eclosion by 
50% in comparison with wild type flies (Table 2).

Discussion
Present data indicate that HSD delays pupae emergence from 

larva and imago eclosion in wild type C-S flies in accordance with 
literature data [11-13]. We are not aware of studies of the effect of HSD 
on preimaginal stages (from egg through larva and pupa to imago) of 
ABC transporter deficient white flies. Notably, the emergence time 
of white (C-S) mutants maintained on standard nutrition medium 

was longer than emergence time of C-S wild type flies. Similar results 
were seen for imago eclosion time in white (C-S) and Canton-S flies. 
This observation may suggest that development rate of egg to adult 
fly is naturally delayed in mutant flies as compared to wild flies. We 
observed that HSD reversed this tendency in mutants in contrast to 
HSD-induced delay of preimaginal development in wild flies: HSD-
induced delay of pre-imaginal development was two times shorter in 
white (C-S) mutants than in wild type C-S flies. Considering that HSD-
induced delay of preimaginal development is caused by IR [11-13], our 
data suggest that mutation of white gene attenuates HSD-induced IR.

Attenuation of HSD-induced IR in white (C-S) flies most likely 
depends on deficiency of ABC transporter that mediates Trp import 
into cell, and, thus, decreases availability of Trp, a substrate for 
intracellularly located TDO [16]. Decreased availability of Trp as 
a substrate for TDO results in decreased Kyn formation from Trp, 
without affecting TDO activity [17]. TDO-regulated KYN formation 
from Trp begins at the end of the third larval instar in the cells of the 
anterior region of fat body (analog of liver and fat tissues in humans) 
[14]. Immediate metabolic response to HSD in Drosophila is an increase 
of glucose in hemolymph [12]. Hyperglycemia induces production of 
O2- and H2O2, and generation of mitochondrial reactive oxygen species 
in rodents [18], and activates hypothalamic-pituitary-adrenal axis 
and, consequently, increases secretion of cortisol, a hormonal inducer 
of TDO, in rat model of T2D [19] and in T2D patients [20]. Notably, 
high glucose selectively inhibits ABC transporter G1 subtype, involved 
in Trp transport, in human macrophages [21]. Therefore, mutation of 
white gene, that prevents Trp import into cell, might confer resistance 
to HSD-induced IR and T2D, an aging associated disease [4]. Notably, 
we reported pronged life span in white mutants [22] while resistance to 
high glucose-induced oxidative stress was associated with longevity in 
rodents [18]. Considering that white mutants have deficient transport 
of both Trp and guanine, attenuation of HSD-induced IR might depend 
not only on Trp but guanine transporter deficiency as well. While 
such a possibility could not be ruled out based on available data, some 
other factors might affect functions of white mutant, the parent strain 
of Methuselah Drosophila [23,24]. Further studies, e.g., of the effect 
of ABC-transporter inhibitor, 5-methylTrp, [25] on HSD-induced IR 
might help to differentiate between impairment of guanine- and Trp- 
ABC transporters. 

Genotype and treatment Standard Diet High Sucrose Diet Delay of emergence (%) 
Canton-S 182.9 ± 18.9 (n=516) 253.8 ± 24.5# (n=465)   40
white (C-S) 195.4 ± 22.2* (n=385) 234.2 ± 31.6*# (n=261)   20

Mean ± standard deviation (hrs); n: number of pupae
Mann-Whitney two tailed test: *p=0.0001 in comparison with Canton-S; #p=0.0001 in comparison with Standard diet. 

Table 1. Effect of high sucrose diet on time of pupae emergence from larvae in white (C-S) and Canton-S flies.

Genotype and treatment Standard Diet High Sucrose Diet Delay of eclosion (%)
Canton-S: 

Female 322.0 ± 17.1 (n=144) 388.1 ± 23.9* (n=144) 20.5
Male 327.8 ± 16.7 (n=126) 392.7 ± 24.1* (n=111) 19.8

white (C-S): 
Female 349.3 ± 36.3 ** (n=165) 380.5 ± 32.1* (n=108) 9
Male 357.9 ± 35.2 ** (n=163) 382.7 ± 33.6* (n=114) 7

Mean ± standard deviation (hrs); n: number of imago.
Mann-Whitney two tailed test: * p=0.0001 in comparison with flies on standard diet; **p=0.0001 in comparison with Canton-S

Table 2. Effect of high sucrose diet on imago eclosion white (C-S) and Canton-S flies.
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Considering high association of obesity and T2D [26] and possible 
involvement of Trp-Kyn pathway in development of obesity [3,6,27-
29], it might be of interest to study development of HSD-induced 
obesity [11 white mutants of Drosophila melanogaster.

In conclusion, present study revealed that attenuation of HSD-
induced development of IR in Drosophila model of T2D might result 
from the deficiency of Trp transport into cell without affecting TDO 
levels. We have previously reported that TDO deficiency attenuated 
HSD-induced IR development as well [15]. Our data provide further 
support for hypothesis that dysregulation of Trp-Kyn pathway is one 
of the pathophysiological mechanisms and potential target for early 
diagnosis, prevention and treatment of IR/T2D [4-7]. 
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