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Introduction
Metabolic syndrome is a constellation of metabolic abnormalities 

including centrally distributed obesity, decreased high‐density 
lipoprotein cholesterol, elevated triglycerides, elevated blood pressure, 
and hyperglycaemia. It is associated with the development of diabetes 
and cardiovascular disease. 

Currently, more than 75% of the disease burden in Oman is 
attributable to non-communicable diseases, with cardiovascular 
disease as the leading cause of death [1]. The distribution of chronic 
diseases and related risk factors among the general population is like 
that of industrialized nations; 12% of the population has diabetes, 30% 
are overweight, 20% are obese, 41% has high cholesterol, and 21% has 
metabolic syndrome [1].

Low Birth Weight (LBW) is increasing world-wide as more and 
more babies being kept alive with advancement of health care. Many of 
these babies nowadays are born less than 1 kilogram in weight and even 
less than 750 gram in weight. Although in many developed countries 
the average birth weight is between 3.5 and 4.0 kg, most developing 
countries average birth weight is less than 3 kg. 

LBW may be due to Intra-Uterine Growth Retardation (IUGR), 
prematurity, or both; epidemiological studies do not always separate 
the two conditions [2]. LBW is a key indicator of health status 
throughout the world (ref). Prematurity is defined as a gestational age 
of less than 37 weeks. LBW is defined as a birthweight less than 2,500 
grams. Babies weighing less than 1,500 grams are categorized as very 
low birth weight and those less than 1,000 grams as extreme low birth 
weight. IUGR is defined as a birthweight below the 10th percentile for 
gestational age [2]. 
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Abstract
Non-Communicable Disease (NCD) including dysglycemia is becoming an epidemic public health issues in many countries around the world. Similarly. Low Birth 
Weight (LBW) is increasing world-wide as more and more babies being kept alive with advancement of health care. This issues of NCD and LBW is by far more 
common in developing countries and worse situations occur in certain Asians countries where LBW reaches almost 20 per 100 population live birth.

LBW is associated with a higher risk for the development of diabetes and other metabolic disorders. Those being born Small for Gestational Age (SGA) and 
of LBW is associated with Type 2 Diabetes Mellitus (T2DM) in a non-genetic manner, and programming of muscle insulin action and signaling represents an 
early mechanism responsible for this association. Also, insulin secretory abnormalities in LBW may result from appropriate fetal adaptation (“programming”) 
to a suboptimal nutritional state during intrauterine life but ultimately are maladaptive when presented with a high-carbohydrate diet after weaning. With the 
superimposition of age-related or dietary insulin resistance, insulin secretory responses are inadequate, resulting in progressive glucose intolerance. 

The care of maternal health and prenatal care is of paramount importance to improve the birth weight and reduce the rate of LBW and prematurity. Postnatal care 
is similarly of great importance to further reduce the impact of LBW on non-communicable disease with the burden of obesity and increasing the metabolic demand 
upon the pancreatic cells.

LBW is a surrogate marker of an adverse fetal environment, is 
associated with development of insulin resistance and Type 2 Diabetes 
(T2DM), insulin resistance and obesity. 

Thrifty hypothesis suggests that T2DM and other various 
components of metabolic syndrome result from inadequate 
intrauterine conditions for optimal fetal growth (ref). Several studies 
have demonstrated a higher risk of diabetes or impaired glucose 
tolerance in relation to LBW [3]. Despite number of critics, thrifty 
phenotype has downplayed an important role for genetic factors in 
the aetiology of T2DM and recently concluded that “environmental, 
probably nutritional factors operating in early life play a major causative 
role in T2DM. Barker et al. concluded that T2DM and hypertension 
have a common origin in sub-optimal development in utero, and that 
syndrome X should perhaps be re-named "the small-baby” [4]. It is 
suggested that the association between LBW and diabetes development 
in adulthood reflects the long-term effects of reduced growth of 
the endocrine pancreas and other tissues in utero, which may be a 
consequence of maternal undernutrition.

Epidemiological evidence
Studies in several countries have shown that children who were 

small at birth have an inability to respond to an oral glucose challenge 
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[4-7]. Thinness at birth, as measured by a low ponderal index 
(birthweight/length), is associated with the occurrence of ‘insulin 
resistance syndrome’, which includes impaired glucose tolerance, raised 
blood pressure and disturbed lipid metabolism, in adult life [7-11]. 
Researchers in the mid-1980s found an inverse relationship between 
‘syndrome x’, which includes T2DM, hypertension, hyperlipidaemia, 
and birthweight, and renamed it as ‘small baby syndrome’ [8]. A review 
of 32 publications revealed a strong relationship between birthweight 
or thinness at birth, indicated by a low ponderal index and later 
development of T2DM, and metabolic syndrome [10].  

Muscle mass and metabolic syndrome
Skeletal muscle is the most plentiful tissue in the body and the 

major pool of protein in the body. It transports glucose in an insulin-
dependent physiological mechanism by the Glucose-Transporter-
type-4 (GLUT4) and contributes in the preservation of serum amino 
acids concentration.  By its mass and energetic requirements, it is 
fundamental for the systemic metabolic balance (ref). Babies who are 
thin at birth lack muscle as well as fat, and muscle in adult life is the 
major site of insulin action [12,13]. It is thought that at some point in 
middle to late gestation, the thin neonate became undernourished, and 
in response its muscles became resistant to insulin and, hence, later 
development of T2DM [9,10,14-16]. Animal studies show that, in an 
adaptation to the poor nutrition, the expression of hormone receptors 
does change, where insulin and catecholamines receptors increased but 
expression of glucagon receptors decreased [17-19]. Skeletal muscle 
responsible for the most of insulin-stimulated glucose clearance, and 
flaws in muscle insulin action denote an initial indicator for diabetes 
risk [20-22]. Healthy population with LBW has reduced muscle mass 
and hence implying a role for skeletal muscle in the pathogenesis of 
insulin resistance in LBW. 

Also, LBW people display a disproportionately amplified, 
incomplete fatty acid oxidation and a decreased glucose oxidation, 
compared with normal  birth  weight individuals, and hence have an 
increased risk of developing  insulin resistance and T2DM [23-25]. 
Therefore, the higher amino acid levels in LBW individuals could be 
a consequence of their reduction in skeletal muscle insulin sensitivity 
due to overfeeding with a possible increased skeletal muscle proteolysis 
and/or could potentially contribute to an impaired insulin sensitivity 
[26-30]. It has been shown that LBW individuals have a higher fasting 
blood glucose level after the control diet compared with normal birth 
weight individuals and the increased gluconeogenesis, occurring 
parallel to an increased hepatic fatty acid oxidation, may contribute to 
this [29,31]. 

Pancreatic secretions
Many metabolic studies have demonstrated both glucose 

intolerance and hyperinsulinemia in LBW individuals [32]. While 
insulin sensitivity is reduced in few studies of both children and adults, 
additional studies have emphasized the role of β-cell dysfunction as 
a key contributor to LBW-associated T2DM [32-34]. Collectively, 
these data demonstrate the seemingly heterogeneity of LBW-
associated diabetes and recommend that both insulin resistance and 
secretory abnormalities contribute to the final phenotype in humans. 
Hyperinsulinemia in population of LBW reflects insulin resistance, 
even with using the less precise homeostasis model assessment or 
intravenous glucose tolerance modelling approaches [35-38]. Potential 
contributors to the variability in insulin sensitivity in LBW are likely 
to include the population under study, methods used for metabolic 
assessment, the underlying cause of aberrant fetal growth, postnatal 

catch-up growth, and other postnatal risk factors, including aging, 
obesity, and inactivity [38-41].

There are two main principal possibilities when considering the 
origin of hyperinsulinemia and subsequent glucose intolerance and 
T2DM [39, 42]. firstly, abnormal insulin clearance despite normal 
insulin sensitivity and develop progressive glucose intolerance [42-
44]. Secondly, abnormalities in β-cell function could also contribute 
to the early hyperinsulinemia and glucose intolerance [16,30,32,45]. 
Abnormal β-cell function or mass has been linked to LBW-related 
metabolic disorders with possibility of either altered β-cell mass or a 
functional β-cell defect resulting in abnormal glucose-stimulated 
insulin release [16,32,33,45]. Whether β-cell mass reduction is due to 
lower insulin gene transcription, biosynthesis, and/or accumulation is 
still not yet fully understood, but differences in insulin content clearly 
cannot account for hyperinsulinemia. Instead it points to intrinsic 
dysregulation of glucose-stimulated insulin secretion [46].

Researchers found that the secretory defect in undernutrition 
pancreatic islets is initially characterized by inability to modulate 
insulin secretion relative to ambient glucose, with a secondary decline 
in glucose-stimulated insulin secretion with aging [32,47].  With age 
advancement there are more inability to increase insulin secretion 
to compensate for age-related insulin resistance and thus develop 
progressive glucose intolerance [36,40,42,48].

LBW people may have glucokinase mutations and this reduced 
glucokinase expression during fetal life reduces fetal insulin secretion 
and, therefore, reduces fetal growth [49-51]. Hence, the fetal insulin 
hypothesis states that, maternal undernutrition results in a low fetal 
glucose and nutrient milieu, which “programs” (low) fetal glucokinase 
activity and (high) hexokinase activity to ensure appropriate insulin 
secretion [32,52,53]. Of course, alterations in expression/function of 
other key genes that regulate insulin synthesis/secretion and the in vivo 
environment of undernutrition pancreatic islets may also modulate 
insulin secretion [32,52-55]. It is likely that the precise mechanisms 
that contribute to spontaneous LBW are critical in determining the 
final β-cell phenotype. 

The inverse relationship between birthweight and glu-
cose disorders

Al Salmi et al. found that in an affluent Western country with a 
good adult health profile, birth weight has an inverse relationship 
with indexes of glycemia, and individuals with LBW were predisposed 
to higher rates of glycemic dysregulation in adult life [56]. In their 
study, 4,502 participants with birth weights mean ± SD of 3.4 ± 0.7 
kg. They found that FPG, PLG, and A1C were strongly and inversely 
correlated with birth weight. The odds ratios (95% CI) for high (> 90th 
sex-specific percentile) FPG, PLG, and A1C were 0.83 (0.71-0.96), 
0.74 (0.65-0.84), and 0.81 (0.70-0.94), respectively, for a 1-kg increase 
in birth weight after adjustment for age and sex. In those with Low 
Birth Weight (LBW), the risks for having IFG, IGT, and diabetes and 
for all abnormalities combined were increased by 1.75, 2.22, 2.76, and 
2.28, respectively, for women and by 1.40, 1.32, 1.98, and 1.49 for 
men compared with risks for those with normal birth weight. These 
trends applied across categories of age and BMI.These associations 
were independent of Body Mass Index (BMI) and of other factors 
significantly correlated with glycemic dysregulation [56]. 

Many researchers have reported the association between LBW and 
the increased risk of, and the earlier onset of type 1 diabetes during 
adulthood, giving rise to the “thrifty hypothesis”. This hypothesis as 
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stated earlier proposes that inadequate nutrition programmes the foetus 
to develop resistance to an insulin-stimulated uptake of glucose in late 
life [57-62]. This inverse relationship between LBW and, impaired 
glucose tolerance and elevated serum insulin, occurs across a whole 
range of ages and in both sexes and racial backgrounds [3,10,37,61-64].  
It may be determined by a genetic defect in insulin action that manifests 
itself in utero as reduced growth, and in later life as an impairment of 
an insulin-stimulated uptake of glucose. In this scenario it is proposed 
that the poorly nourished mother essentially gives the foetus a forecast 
of the nutritional environment into which it will be born. Processes are 
set in motion, leading to a postnatal metabolism adapted to survival 
under conditions of poor nutrition. The adaptations only become 
detrimental when the postnatal environment differs from the mother’s 
forecast, with an overabundance of nutrients and consequent obesity [10].

A U-shaped curve relationship exists between birthweight and, 
glucose as seen in the Pima Indians and the Nurses’ Health Study 
(NHS) [63,64]. As such, both LBW individuals and heavy birthweight 
individuals are at higher risk of developing as adult. The heavy 
birthweight phenomenon has been attributed to gestational diabetes, 
which by its self is associated with increased risk of in adult off spring [63].

Hertfordshire study
In a study of men in Hertfordshire in 1991, glucose tolerance tests 

were performed on 64-year-old men for whom birthweight records 
were available. The proportion of men with impaired glucose tolerance 
(2-hours (h) plasma glucose 7.8-11.0 millimoles/litre (mM/L)) or 
(2-hplasma glucose > 11.0 mM/L) steadily increased with decreasing 
birthweight. This relationship was continuous across the birthweight 
categories, with those men who were smallest at birth (< 2.5 kg) being 
nearly seven times more likely to have impaired glucose tolerance than 
those who were heaviest at birth (> 4.3 kg) [65].

In the same Hertfordshire cohort, researchers found an inverse 
relationship between birthweight and the current presence of metabolic 
syndrome [4]. Metabolic syndrome was defined as glucose intolerance 
(2-h glucose > 7.8 mM/L), systolic blood pressure > 160 mmHg, and 
a fasting plasma triglyceride concentration equal to or above the 
median concentration for that population (≥ 1.4 mM/L). Metabolic 
syndrome increased with decreasing birthweight, so that men with the 
smallest weight at birth were 18 times more likely to have the metabolic 
syndrome than those who were heaviest at birth. The prevalence of 
metabolic syndrome fell from 30% to 6% between those who were 
small, and those who were heavy at birth [4].

The effect of obesity during childhood
Obesity in childhood has a greater effect on the development of 

metabolic syndrome than does obesity in adulthood [66]. However, 
the Helsinki cohort, born 1924-1933, showed that the development of 
insulin resistance was associated with thinness at birth, and continued 
thinness in childhood, followed by the development of obesity in 
adult life [35,67]. The foetal growth restriction leads to a reduced cell 
number in the endocrine pancreas and subsequent accelerated growth 
in childhood leads to excessive metabolic demands on the limited cell 
mass. Men and women, in a Dutch study, exposed to a brief period of 
intense starvation in utero but who were well nourished as children, 
had higher plasma glucose concentrations, higher pro-insulin and 
insulin concentration, and therefore exhibited insulin resistance [41]. 

Conclusion
 LBW is a significant risk factor for T2DM, understanding the 

pathophysiology of LBW-associated glucose intolerance is important 

for both prevention and therapy.  The care of maternal health and 
prenatal care is of paramount importance to improve the birth weight 
and reduce the rate of LBW and prematurity. Postnatal care is similarly 
of great importance to further reduce the impact of LBW on non-
communicable disease with the burden of obesity and increasing 
the metabolic demand upon the pancreatic cells. Early detection of 
various metabolic risk factors in this specific group of population is 
an important strategy from public health perspective to allow early 
intervention and management.
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