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Abstract
In an attempt to correct misunderstandings this article brings together the observations on Calcium, Myosin Binding Protein-C and Hypertrophic Cardiomyopathy 
in the basic function of cardiac muscle.  A finding of many years ago is reiterated in a novel enzyme kinetic format with defined rate limiting step which makes CaATP 
the apparent substrate of the actomyosin cross-bridge. The relationship of these kinetics to recent observations on disruption of myosin binding protein-C is described 
along with how this bears on the understanding of the related cardiomyopathies.
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The roles of Calcium and Adenosine triphosphate (ATP) 
Based on our earlier publication [1], I have constructed simple 

derivation of the ‘CaATP as cross-bridge substrate proposition’ in 
terms of enzyme kinetics and present it here, For normal cardiac 
muscle the well-established accepted facts are, a) The myofilament 
ATPase dependency on Ca2+ shows cooperativity, i.e. a Hill coefficient 
of 2 indicating probable two site binding of activating Ca2+ [2-5]. b) 
The Ca2+ stimulated ATPase shows competitive inhibition by Mg2+ 

[3,4]. c) The primary binding site for Ca2+ activation is troponin which 
is measurable by 45Ca2+ binding. This binding to troponin removes its 
blocking of the thin filament actin allowing the thick-filament myosin 
to form a cross-bridge to the actin [3-5]. d) The cross-bridge consumes 
ATP to generate contraction and/or tension in the muscle [6]. The ATP 
Hill coefficient of the ATPase is 1 i.e. unimolecular.  e) The troponin 
binding site shows no affinity for Mg2+ so it is not the competitive Mg2+ 
inhibition site, this confirms the existence of a transient second Ca2+ 
binding site that is competitively inhibited by Mg2+, but not measurable 
by 45Ca2+ binding, i.e. requires ATP.

f) The very simple conclusion is that in the unperturbed heart the 
cross-bridge is a Ca2+ ATPase and inhibited by Mg2+, i.e. MgATP binding 
to the myosin gives the relaxed state ready for Mg2+-Ca2+ exchange and 
cross-bridge cycling if the troponin is still Ca2+ bound. This is consistent 
with the Ca2+ cooperativity, i.e. Hill coefficient 2. It is clear from two 
studies [7,8], one very recent, that replacement of the product CaADP 
from the cross-bridge with MgATP is essential to complete the lever 
arm cycle. 

There is one caveat to add to this scheme. For this kinetics to be true 
the replacement of Mg2+ with Ca2+ or a subsequent step dependent on this 
has to be the rate determining step. It is possible that the pyrophosphate 
bond is not hydrolyzed but a phosphate group is transferred to a protein 
(myosin light chain?), increasing the charge carried and thus raising the 
Ca2+ affinity of the ADP bound protein above that of Mg2+. This clearly 
happens with phosphorylation by myosin light chain kinase [9].

Myosin binding protein-C (MyBP-C) 
Irving et al. [10] have shown that dissociation of MyBP-C from 

myosin by addition of its binding fragment C1mC2 reduces the Hill 

coefficient for Ca2+ activation to unity and shifts the Ca2+ sensitivity to 
the affinity of troponin-C. This is also found by Hofmann et al. [11] 
on the reversible physical removal of the MyBP-C. The sole disruption 
of C1mC2 is to the myosin binding of MyBP-C as is the reversible 
physical removal of it, leaving the Ca2+ troponin binding being the sole 
activator, i.e. Ca2+ Hill Coefficient 1. These procedures both remove the 
necessity of Ca2+ replacement of the Mg2+ that is bound with ATP to 
the myosin for cross-bridge cycling to occur, i.e. MgATP use becomes 
the rate limiting step. It is not known if the Ca2+-Mg2+ still occurs but 
probably not. The conclusion from this is that the function of myosin 
binding protein-C is to ensure that MgATP is not the apparent substrate 
for cross-bridge cycling in the unperturbed normal heart and the Ca2+-
Mg2+ exchange defines the rate limiting step of the actomyosin ATPase. 
Thus, maintaining the full cooperativity of Ca2+ activation and normal 
Ca2+ sensitivity well below the Troponin affinity and hence full diastolic 
relaxation, see later. This is the first recorded biochemical function of 
MyBP-C although its phosphorylation is recognized as an important 
regulator in muscle function. 

It has previously been accepted that MyBP-C is a key structural 
protein of the thick filament but being so easily reversibly removed [11] 
this is not so. It has an affinity for the thin filament, but this is displaced 
by the myosin. 

Hypertrophic cardiomyopathy 
Cardiomyopathy are diseases that to variable debilitating extent 

affects some 1 in 200 of the world’s population. Hypertrophic 
cardiomyopathy, often undiagnosed as it appears as a healthy heartbeat 
in earlier stages, does eventually give problems with high diastolic and 
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systolic pressure.  What is more is one often hears of young people 
especially athletes and sportsmen experiencing sudden cardiac death 
as a result of the condition, when the conductance of their heart is 
extremely faulty resulting from the myofilament disarray of severe 
hypertrophy.  

Hugh Watkins [12] and others [13,14] cite various mutations in 
genes encoding for sarcomeric proteins, mostly MyBP-C and myosin, 
that are a common cause of hypertrophic cardiomyopathy. This is as 
a result of muscle growth arising from incomplete relaxation between 
beats, i.e. sustained tension [15,16], when the Ca2+ cooperativity is 
reduced and Ca2+ sensitivity greatly increased by mutated MyBP-C 
or myosin (MgATP reaction is then rate determining, as happens in 
vitro when disabling  myosin MyBP-C binding to the myosin) [10,11]. 
The elastic giant protein titin binds myosin and MyBP-C. It has been 
proposed that sustained tension allows time for a degree of unfolding of 
the elastic portion of titin [15,16] and the release of nuclear activating 
factors, e.g. muscle LIM protein, that are bound to the elastic region. 
The release of the activating factors promotes inappropriate growth of 
the sarcomere and the resulting disarray of muscle fibres observed in 
most cases of familial hypertrophic myopathy. 

Non-medication of hypertrophic cardiomyopathy
For those that have hypertrophic myopathy diagnosed as a result of 

heart problems there is only lifestyle change recommended. A drug to 
increase relaxation rate is required to prevent further sustained tension 
mediated growth, levosimendan seems to do this but also increases the 
contraction rate and so would need to be used in conjunction with a 
Ca2+ uptake inhibitor to reduce the latter. It is interesting that this drug 
combination has been administered successfully when levosimendan 
has been used during rescue of an attempted suicide patient [17].   

Footnote 
 Most of the above save the cardiac diseases, applies equally 

to mammalian skeletal muscle, with differences in isoforms of the 
constituent proteins.
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