Journal of Integrative Cardiology

ISSN: 2058-3702

Short Communication

The mechanisms of the Frank-Starling law and familial cardiomyopathy are different. The function of myosin binding protein-C is retained on myocyte length increase and force generated is kinase controlled

Gerry A Smith*

Department of Biochemistry, University of Cambridge, Tennis Court Rd. Cambridge, CB2 1QW, UK

Abstract

I have recently reiterated that the cross-bridge is a calcium ATPase that is inhibited by magnesium and this arises because in normal hearts Myosin binding Protein-C prevents the use of MgATP as rate limiting substrate ensuring that Ca^{2*} replaces Mg^{2*} in the excitation pathway. Here I revisit the studies on $[Ca^{2*}]$ dependency of ATPase and tension under diastolic stretch with a different conclusion on Hill coefficients. This reveals the underlying mechanisms of the Frank-Starling Law and Hypertrophic myopathy are not the same, the former being kinase controlled.

The function of myosin binding protein C

As demonstrated by Solaro [1,2] Mg²+ is a competitive inhibitor of the Ca²+ stimulation of cardiac muscle ATPase and contraction. On the basis of the measured binding affinities [1,2]. I have argued that the inhibition is not via the troponin-C binding of Ca²+ but via a second transient effector binding site [3,4] dependant on ATP and hence not measurable by ⁴5Ca²+ binding and proposed that this is the myosin-bound ATP or the myosin bound products MgADP and Pi or transient phosphoprotein. The Myosin binding Protein-C (MyBP-C) makes Ca²+Mg²+ exchange or a consequent step rate-limiting in cross-bridge cycling and prevents MgATP appearing as the apparent substrate [3]. This is consistent with both the contraction effective Ca²+ affinity being lower than that of troponin-C and the elevated Ca²+ cooperativity observed for both myofibril ATPase and tension development (Hill coefficient 2 in normal heart tissue).

On dissociation or removal of MyBP-C and in hypertrophy the Hill coefficient is greatly reduced and the activating $[Ca^{2+}]$ approaches the affinity of Troponin C [5,6], i.e. MgATP becomes the rate-limiting substrate of the cross-bridge ATPase.

On diastolic stretch the function of MyBP-C is retained

Data taken from various sources indicates that under the effect of length increase during diastole, the effective Ca²⁺ affinity for tension development rises a little towards that of troponin-C [7-11], much less than when MyBP-C is removed [5,6]. This is without a significant decrease in Hill coefficient, my earlier treatment was wrong [12,13], I admit quoting an incorrect review article and apologize. Here reports with a highly elevated Hill coefficient in the unstretched state were rejected as mechanical cooperativity would swamp any chemical cooperativity. There is one case where the ATPase activity associated with stretch has been investigated [14] and, although the resting Ca²⁺ Hill coefficient is a bit less than 2, it shows a small shift to higher Ca²⁺

affinity with no significant reduction in the Hill coefficient. Whether measured as tension or ATPase activity under diastolic stretch, the MyBP-C retains its biochemical function, i.e. inhibiting MgATP as rate-limiting substrate 3.

The current understanding of length induced change

After Moss [15] there has been little advance since the review of myofilament length dependent activation by de Tombe et al. [16]. The above is consistent with there being a critical dimension in the sarcomere of cardiac muscle that is altered with length increase applied in diastole. It is possible but unlikely that this dimension is the separation of the thick and thin fillaments [10,11]. As there is no change in the Hill coefficient on shift to lower $[Ca^{2+}]$ it is the result of simply raising the effective Ca^{2+} affinity of either the troponin-C [1,2,8,17-19] or the myosin bound ATP/ADP [3,4], i.e. increased exchange rate of Ca^{2+} for Mg^{2+} .

Relationship to cardio myopathy

It has been noted by us [12] and others cited in the same reference that there are correlations between studies on the Frank-Starling law and those on familial hypertrophic cardiomyopathy in that they both show a shift to activation at lower $[Ca^{2+}]$ although as reported here only the hypertrophy shows a large shift and definite lowering of the Ca^{2+} cooperativity1 as is also shown on removal of MyBP-C [5,6].

*Correspondence to: Gerry A Smith, Department of Biochemistry University of Cambridge, Tennis Court Rd. Cambridge, CB2 1QW, UK, E-mail: gas1000@cam.ac.uk

Key words: frank-starling law, cardiomyopathy, myosin binding protein-C

Received: October 10, 2019; Accepted: October 17, 2019; Published: October 28, 2019

J Integr Cardiol, 2019 doi: 10.15761/JIC.1000278 Volume 5: 1-3

In many instances of the reverse of hypertrophy, i.e. familial dilated myopathy, there is also the noted absence of the effect of diastolic stretch on the strength of contraction. In dilated myopathy there is always complete relaxation in diastole and much reduced tension in systole resulting in a deficiency in muscle growth, vide infra. These myopathies are mostly arising from mutations in the Troponins [18] suggesting that the effect of normal tension maybe in part mediated via troponin and the thin filament.

The above correlation led us to believe that in familial hypertrophic cardiomyopathy the effect of any one of the associated mutations (in genes encoding for sarcomeric proteins [20] mostly MyBP-C or myosin) was to render the normally inhibitory Mg²⁺ to be stimulatory [3]. The most significant result of these mutations is loss of Ca²⁺ cooperativity rendering the relaxation in diastole incomplete resulting in a state of chronic tension. It is proposed that chronic tension allows time for a degree of unfolding of the elastic portion of titin [21,22] and the release of nuclear activating factors, e.g. muscle LIM protein, that are bound to the same elastic region. The release of the activating factors promotes inappropriate growth of the sarcomere and the resulting disarray of muscle fibres observed in most cases of familial hypertrophic myopathy.

This is not the mechanism of Frank-Starling activation as full relaxation occurs with diastolic length increase, i.e. the Ca^{2+} Hill coefficient of activation is not reduced, the MyBP-C function is retained.

The involvement of kinases in the frank-starling law

The elastic giant protein titin binds myosin and MyBP-C and their involvement via altered myosin heads interaction with the thin filament, is still a contender for length induced changes.

However, a recent study with structural sensitive probes indicates that changes in the myosin head region [23] are responsible for the stretch induced amplification of maximal tension with minimal changes in the thin filament.

By the use of knock-out mice the misnamed "multifunctional" transducer protein β -Arrestin has also been shown to be essential to produce the length induced tension increase and shift towards the troponin Ca²⁺ sensitivity through the angiotensin type 1 receptor [24], but not via the phosphoinositide-Ca²⁺ second messenger system, i.e. no change in resting or stimulated [Ca²⁺] is involved.

The presence of cardiac troponin-I (cTn-I) is also a requisite for length induced activation [16] and is possibly a substrate for kinase-C or MLCK action as only the threonine at position 144 in cardiac TnI is essential, the serines are not. This is shown by substituting a hybrid skeletal Tn-I, missing serines, with added threonine at residue 144.

Protein phosphorylation [25] does though appear to be involved, in the case of MyBP-C and its insistence on Mg^{2+} – Ca^{2+} exchange one would expect acceleration of the rate determining step as is found on phosphorylation. Although kinase action on the troponins does modulate contraction strength coupling with length induced changes has not been directly demonstrated. β -Arrestin stimulated Ca^{2+} -independent phosphorylation has also been muted but again not shown (does not exist?).

Losartan [24] a drug that blocks angiotensin II type 1 receptor (AT1R) activation is found to block the length induced enhancement of cardiac sensitivity. So, on length increase of the plasma membrane (PM) it would seem the AT1R appears activated.

The next steps in the sequence are phosphorylation of the activated AT1R tail by adrenergic receptor kinase (GRK) followed by translocation of $\beta\text{-}Arrestin$ from the cytoplasm to bind strongly to the phosphorylated AT1R [26,27] at the plasma membrane. This binding inhibits further phosphorylation of the AT1R, $\beta\text{-}Arrestin$ is a kinase inhibitor!! From where its name originates. No way does it change its spots with cell location.

Myosin light chain kinase (MLCK) activity [28-30], would fit very well with the structural changes reported in the myosin heads, see above [23]. It is constitutively active, is Ca^{2+} and calmodulin dependent but has 38% basal activity in absence of calmodulin [30] and in vivo is associated with a calmodulin inhibitor. It is almost certainly inhibited by the β -Arrestin normally in the sarcoplasm, removal of the inhibition occurs on angiotensin activation or as we see here by stretch. This does not preclude similar Kinase A or C (PKA or PKC) activation.

Myosin light chain phosphorylation by PKA, PKC or MLCK will increase the affinity of the myosin bound ATP/ADP for Ca^{2+} over that for Mg^{2+} , more negative charge and chelating phosphate groups, shifting the sensitivity to lower $[Ca^{2+}]$ and increasing contractile strength. This is supplemented by Tn-I phosphorylation at residue 144, lowering its inhibitory role [16].

The relationship of the above to normal cardiac function

As with the phosphorylation's above [25] the amplitude of tension has been shown by de tombe et al to be dependent on phosphorylation by PKA of both MyBP-C and Troponin-I [31]. Similar results were found with PKA phosphorylation of MyBP-C by Steltzer et al. [32]. However, these results could also arise through the above mechanism, distinguishing one kinase activation in the presence of all is not a trivial matter. The functions of and regulatory role of MLC is well documented [33] and control of these in general cardiac function is also documented [34,35].

References

- Solaro RJ (1975) Calcium regulation of cardiac myofibrillar activation: effects of MgATP. J Supramol Struct 3: 368-375. [Crossref]
- Solaro RJ, Shiner JS (1976) Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils. Circ Res 39: 8-14. [Crossref]
- Smith GA (2019) Calcium, Actomyosin Kinetics, Myosin Binding Protein-C and Hypertrophic Cardiomyopathy. Preprints.
- Smith GA, Vandenberg JI, Freestone NS, Dixon HB (2001) The effect of Mg2+ on cardiac muscle function; is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ re-uptake by the sarcoplasmic reticulum? *Biochem J* 354: 539-551. [Crossref]
- Kampourakis T, Yan Z, Gautel M, Sun Y-B, Irving M (2014) Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. PNAS 111: 18763-18768.
- Hofmann PA, Hartzell HC, Moss RL (1991) Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97: 1141-1163. [Crossref]
- Babu A, Sonnenblick E, Gulati J (1988) Molecular Basis for the Influence of Muscle Length on Myocardial Performance. Science 240: 74-76. [Crossref]
- Cazorla O, Vassort G, Garnier D, Le Guennec JY (1999) Length Modulation of Active Force in Rat Cardiac Myocytes: is Titin the Sensor? *J Mol Cell Cardiol* 31: 1215-1227.
- Fuchs F, Smith SH (2001) Calcium, Cross-Bridges, and the Frank-Starling Relationship. News Physiol Sci 16: 5-10. [Crossref]
- Konhilas JP, Irving TC, Wolska BM, Jweied EE, Martin AF, et al. (2003) Troponin I in the murine myocardium: influence on length dependent activation and interfilament spacing. J Physiol 547: 951-961. [Crossref]

J Integr Cardiol, 2019 doi: 10.15761/JIC.1000278 Volume 5: 2-3

- Konhilas JP, Irving TC, de Tombe PP (2002) Myofilament Calcium Sensitivity in Skinned Rat Cardiac Trabeculae, Role of Interfilament Spacing. Circ Res 90: 59-65. [Crossref]
- 12. Smith GA (2007) New Concepts in the Control of Muscle Contraction. Rowans Scientific, ISBN.
- Smith GA (2010) Frank-Starling law and mass action calcium activation of the myofibril ATPase. J Mol Cell Cardiol 49: 707-708. [Crossref]
- Kuhn HJ, Bletz C, Rüegg JC (1990) Stretch-induced increase in the Ca2+ sensitivity of myofibrillar ATPase activity in skinned fibres from pig ventricles. *Pflugers Arch* 415: 741-746. [Crossref]
- Moss RL, Fitzsimons DP (2002) Frank-Starling Relationship, Long on Importance, Short on Mechanism. Circ Res 90: 11-13. [Crossref]
- de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, et al. (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48: 851-858. [Crossref]
- Akella AB, Su H, Sonnenblick EH, Rao VG, Gulati J (1997) The cardiac troponin C isoform and the length dependence of Ca2+ sensitivity of tension in myocardium. J Mol Cell Cardiol 29: 381-389. [Crossref]
- Ohtsuki I, Morimoto S (2008) Troponin: regulatory function and disorders. Biochem Biophys Res Commun 369: 62-73. [Crossref]
- Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, et al. (2014)
 Cardiac thin filament regulation and the Frankâ€"Starling mechanism. J Physiol Sci 64: 221-232. [Crossref]
- Flashman E, Redwood C, Moolman-Smook J, Watkins H (2004) Cardiac Myosin Binding Protein C, Its Role in Physiology and Disease. Circ Res 94: 1279-1289. [Crossref]
- Krüger M, Kötter S (2016) Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechano signalling and Skeletal Muscle Remodeling. Front Physiol 7: 76. [Crossref]
- Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B (2009) Myocyte Remodelling in response to hypertrophic stimuli requires nucleocytoplasmic Shuttling of muscle LIM protein. J Mol Cell Cardiol 47: 426-435. [Crossref]
- 23. Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M, et al. (2017) Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. *Elife* 6: e24081. [Crossref]

- Abraham DM, Davis RT 3rd, Warren CM, Mao L, Wolska BM, et al. (2016) β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility. *Proc Natl Acad Sci* USA 113: 14426-14431. [Crossref]
- Ponnam S, Sevrieva I, Sun Y-B, Irving M, Kampourakis (2019) Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. PNAS 116: 15485-15494.
- Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, et al. (2007) The G proteincoupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. *Biochim Biophys Acta* 1768: 913-922. [Crossref]
- Gurevich VV, Gurevich EV (2019) GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol 10: 125. [Crossref]
- Ishikawa Y, Kurotani R (2008) Cardiac Myosin Light Chain Kinase, A New Player in the Regulation of Myosin Light Chain in the Heart. Circ Res 102: 516-518.
 [Crossref]
- Stelzer JE, Patel JR, Moss RL (2006) Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol 128: 261-272. [Crossref]
- Wolf H, Hofmann F (1980) Purification of myosin light chain kinase from bovine cardiac muscle. Proc Natl Acad Sci USA 77: 5852-5855. [Crossref]
- Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, et al. (2015) Cardiac myosin-binding protein C and troponin-I phosphorylation independently modulate myofilament length-dependent activation. J Biol Chem 290: 29241-29249. [Crossref]
- Mamidi R, Gresham KS, Verma S, Stelzer JE (2016) Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 7: 38. [Crossref]
- Sheikh F, Lyon RC, Chen J (2015) Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene 569: 14-20. [Crossref]
- 34. Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, et al. (2010) Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. J Biol Chem 285: 40819-40829. [Crossref]
- Chang AN, Kamm KE, Stull JT (2016) Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol 101: 35-43. [Crossref]

Copyright: ©2019 Smith GA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Integr Cardiol, 2019 doi: 10.15761/JIC.1000278 Volume 5: 3-3