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Abstract
Small non-coding ribonucleic acids (RNAs), known as microRNAs (miRNAs), are now becoming recognized as significant agents that can affect the onset and 
progression of numerous disorders throughout the body. In particular, miRNAs also may determine stem cell renewal and differentiation. Intimately tied to the 
ability of miRNAs to govern stem cell proliferation are the proliferative pathways of silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) 
(SIRT1) and the cell survival mechanisms of autophagy that can be coupled to the activity of the mechanistic target of rapamycin (mTOR). Targeting miRNAs that 
oversee SIRT1 activity offers interesting prospects for the translation of these pathways into efficacious clinical treatment programs for a host of disorders. Yet, as 
work in this area progresses, a number of challenges unfold that impact whether manipulation of non-coding RNAs and SIRT1 can finely guide stem cell renewal 
and differentiation to reach successful clinical outcomes.

Stem Cell Clinical Utility: Considerations for miRNAs 
and SIRT1

Stem cells are increasingly being considered for the development 
of novel strategies for multiple disorders throughout the body that 
can affect the nervous system, cardiovascular system, immune system, 
metabolism, and cancer. One of the challenges for applications that rely 
upon stem cell proliferation and differentiation is the protection and 
maintenance of stem cell populations. For example, specific pathways, 
such as the mechanistic target of rapamycin (mTOR), can be critical for 
stem cell proliferation [1]. In the absence of mTOR activity, trophoblast 
growth can be inhibited with the failure to establish embryonic stem 
cells [2]. Loss of mTOR activity in neural stem cells results in reduced 
lineage expansion and blocked differentiation and neuronal production 
[3]. During aging, activity of mTOR may be reduced and leads to 
reduced neurogenesis [4] and a reduction in the proliferation of active 
neural stem cells [5]. The degree of activity of the mTOR pathway also 
can impact the differentiation of stem cell populations. Inhibition of 
mTOR activity can promote cell differentiation into astrocytic cells 
[6] and lead to earlier neuronal and astroglial differentiation [7]. 
Furthermore, increased activity of mTOR can foster tumor growth [8, 
9]. Blockade of mTOR activity can limit the population of cancer stem 
cells that can cause disease recurrence and therapeutic resistance [10]. 

Interestingly, loss of mTOR activity can promote the induction of 
autophagy [11] and lead to an increase in silent mating type information 
regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) activity that 
also is vital for stem cell proliferation [12]. In human embryonic stem 
cells challenged with oxidative stress, autophagy leads to cell protection 
and requires SIRT1 activity with the concurrent inhibition of mTOR 
[13]. SIRT1 appears to have an inverse relationship with mTOR to 
increase stem cell survival [12,14]. During the down-regulation of 
mTOR, SIRT1 promotes neuronal growth [15] and increases mesangial 
cell proliferation during high glucose exposure [16]. SIRT1 can limit 
the expression of aged mesenchymal stem cell phenotypes [17], prevent 

senescence and impaired differentiation of endothelial progenitor 
cells [18], and improve cardiomyoblast survival [19]. SIRT1 can 
influence neuronal differentiation as well. If SIRT1 is repressed with 
the parallel induction of heat shock protein-70, neural differentiation 
and the maturation of embryonic cortical neurons can ensue [20]. 
Differentiation of human embryonic stem cells into motoneurons also 
occurs in the absence of SIRT1 [21]. As a proliferative agent, increased 
activity of SIRT1 under some circumstances can lead to the expansion 
of cancer stem cells. SIRT1 can maintain acute myeloid leukemia stem 
cells and result in resistance against chemotherapy [22], promote 
endometrial cell tumor growth through lipogenesis [23], and foster 
oncogenic transformation of neural stem cells [24].

One strategy that may successfully regulate SIRT1 activity and 
stem cell proliferation for effective translation into clinical treatment 
programs may involve the modulation of microRNAs (miRNAs). 
MiRNAs are composed of 19-25 nucleotides and are small non-
coding ribonucleic acids (RNAs). MiRNAs oversee gene expression 
by silencing targeted messenger RNAs (mRNAs) translated by specific 
genes. These small non-coding ribonucleic acids may play an important 
role to influence stem cell proliferation and cellular differentiation. 
For example, over-expression of miR-381 can lead to neural stem cell 
proliferation and prevent differentiation into astrocytes [25]. MiR-
134, miR-296, and miR-470 can serve to target Oct4, Sox2, and Nanog 
coding regions to lead to stem cell differentiation [26]. In regards to 
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SIRT1, neuronal differentiation can occur through miR-34a that leads 
to decreased SIRT1 expression and DNA-binding of p53 in mouse 
neural stem cells [27]. However, during increased SIRT1 activity, miR-
34a results in astrocytic differentiation that appears to be independent 
of SIRT1 [27]. Under other conditions, a reduction in miRNA activity 
with increased SIRT1 expression may be necessary for stem cell 
proliferation. Silencing of miR-195 in old mesenchymal stem cells that 
allows increased SIRT1 activity restores anti-aging factors expression 
that include telomerase reverse transcriptase, protein kinase B (Akt), 
and the forkhead transcription factor FOXO1 [28] to promote stem cell 
proliferation [29]. In addition, loss of miR-204 that can target SIRT1 
can allow SIRT1 to foster the proliferation of spermatogonial stem 
cells [30]. Given the inverse relationship between mTOR and SIRT1, 
proliferation of stem cells also may require increased SIRT1 activity 
in combination with the inhibition or dysfunction of mTOR signaling 
that is controlled by miRNAs [31].

Targeting miRNAs provides an intriguing format for the control 
of stem cell proliferation and differentiation through pathways that 
involve SIRT1. Yet, several considerations must be addressed for the 
development of novel strategies with stem cells, miRNAs, and SIRT1. 
For example, the cellular level of activity of SIRT1 that is controlled 
by miRNAs may present an important caveat for the development 
of strategies for clinical disorders, since the presence of SIRT1 has 
the capability to either promote or retard stem cell proliferation 
and differentiation. To a similar degree, the level of SIRT1 activity 
can ultimately influence cellular survival. Sufficient SIRT1 activity is 
required for cellular cardiovascular protection [32-35] and neuronal 
protection [36-38]. However, a reduction in SIRT1 activity may be 
necessary for growth factor protection with insulin growth factor-1 
[39]. Other considerations involve the role of programmed cell death 
pathways that involve autophagy or apoptosis as well as mTOR 
with miRNAs and SIRT1. SIRT1 can promote autophagy induction 
during inhibition of mTOR activity that may be beneficial to stem cell 
proliferation. Yet, non-coding mRNAs may block autophagy pathways 
through SIRT1 and prevent potentially reparative stem cell pathways 
such as angiogenesis [40]. In addition, some miRNAs, such as miR-
34a, have been reported to lead to apoptosis, impaired cell vitality, 
and aggravated senescence in mesenchymal stem cells through the 
activation of the SIRT1 and FOXO3a [41], clearly suggesting that 
SIRT1 activity regulated by miRNAs can greatly affect not only stem 
cell proliferation and differentiation, but also stem cell survival. 
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