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Preface
The endothelium is responsible for the homeostasis of the 

cardiovascular system and other organs by producing and secreting 
molecular signals, activating and upgrading expression of receptors 
on many cell surfaces including endothelial cells themselves, a self-
perpetuating condition that is accelerating with time until a specific 
mechanism blocks the signals. Most of the endothelial progenitor 
cells (EPCs) reside in niches within the bone marrow and are released 
only "on demand" when a certain trigger is activated – like ischemia 
or an increase in oxidative radicals or other inflammatory trigger is 
activated – recruiting them to remote areas of ischemia where they are 
most needed for regeneration of blood vessels. By mobilization cells 
from their niches the regenerative system can create new blood vessels 
– angiogenesis or vasculogenesis. 

Primary endothelial cells 
Angiogenesis is a process involved with stem cells mobilization 

and building new vessels coming out of an existing blood vessels [1]. 
Vasculogenesis is a process of building new blood vessels, de novo, 
from endothelial stem cells and endothelial progenitor cells [2]. This 
process starts as a colony of primary cells (angioblasts) in the margins 
of the core composed of hematopoietic cells in the center [3]. Both cells 
have common characteristics like genetic markers fetal liver kinase 
(Flk-1), tyrosine kinase with immunoglobulin-like and EGF-like 
domains 1 (Tie-2) and cluster of differentiation (CD)34. The common 
belief is that all these cells originate from the same ancient common 
"father" [3,4]. 

Hematopoietic stem cells in the peripheral blood are circulating 
stem cells that were detached from their niches in the bone marrow 
[5]. Asahara found that the marker CD34 is expressed on all 
hematopoietic stem cells but it disappears when these cells mature 
and become defined cells [6,7]. The same phenomenon was described 
for the receptor of vascular endothelial growth factor – Flk-1 – that 
characterizes hematopoietic stem cells and primary endothelial stem 
cells, but disappears during the hematopoietic differentiation and 
maturation process [8]. 

When endothelial stem cells marked as CD34+ were grown in 
culture they became spindle shaped cells within 4 weeks [9]. When 
cultured on fibronectin coated plates the differentiation into spindle 
shaped cells occurred within 3 days, and they were attached to the 
bottom of the plate [9]. CD34- cells were not attached to the bottom 
of the plate and started to attach to the fibronectin plate only after 4 
weeks [9]. interestingly, when both cells were grown together CD34+ 
proliferated extensively and formed tube formation earlier [6]. The 

combined growth of CD34- and CD34+ cells created colonies within 
12 hours, most of them were composed of CD34+ marked cells, and 
were characterized by a core shaped island composed of rounded small 
cells and around this core were spindle shaped cells that surrounded 
the core like a "sunflower". These structures looked like epiblasts that is 
known to be the origin of endothelial cells and blood vessels [3].

It appears that during the maturation and differentiation process 
cell surface markers change. For example, CD34+ cells that were 
grown on fibronectin 94% had also a CD45+ marker that disappeared 
after 7 days. Only 16% of cells that started as CD34+ remained with 
this surface marker after maturation. 27% developed Flk-1+ markers, 
11% developed CD34+/Flk-1+ cells. Endothelial cell markers like E 
selectin, Tie-2, Flk-1, CD31, and CD34 were more prevalent among 
cells that were adherent and stick to the bottom of the plates [6]. These 
cells secrete nitric oxide in response to acetyl choline, and apparently, 
the development of these cells into endothelial cells is a nitric oxide 
dependent pathway [6]. 

Another study by Asahara found that these endothelial progenitor 
cells that had surface receptors Flk-1+ or tie-2 were involved in 
angiogenesis, part of a generalized mechanism of stem cells' recruitment 
to areas of ischemic damage or where blood vessels regeneration is 
needed [10]. 

Characterizing endothelial progenitor cells
What is the real endothelial stem cell? That question is still in debate, 

and it depends on the location of the cells and their maturation and 
differentiation. These cells defined as early or young endothelial cells 
or endothelial progenitor cells were found in patients with sickle cell 
anemia [11], in septic shock [12], and in systemic lupus erythematosus 
[13]. The paradigm is that these cells are endothelial cells that died 
and are shed in the blood stream, but still, it is not clear enough and it 
could be that they are shed from the bone marrow [14-16]. In order to 
explore this enigma peripheral cells of patients who had bone marrow 
transplantation from a different gender (from male to female or vis 
versa) were studied, and it was found that 9 days after transplantation 
the endothelial cells were phenotypically cells of the recipient, which 
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mobilize smoothly and quickly to areas of need. Vascular endothelial 
growth factor (VEGF) is one of the potent forces that are involved 
in mobilization and directing cells to areas of regeneration. In areas 
of ischemic or in malignant tumors VEGF expression is increasing 
exponentially [27,28]. Another potent peptide that is involved in 
mobilization is the Hypoxia Inducible Factor (HIF-1) [29-33]. Growth 
factors like Granulocyte Macrophage Colony Stimulating Factor (GM-
CSF) also contributes to stem cells mobilization together with VEGF 
during acute vascular events and acute stress [34,35]. 

Estrogen has a positive effect on vasculogenesis by mobilization 
stem cells from the bone marrow. Mice that were injected estrogen 
their endothelium was regenerated faster and more effectively [36,37]. 
The effect of estrogen is through nitric oxide dependent pathways by 
activating the enzyme endothelial nitric oxide synthase – and appears 
that this enzyme has a key role in activating and mobilizing stem cells 
from the bone marrow [36,38].

Statins (HMG-CoA reductase inhibitors) have been shown to 
increase level of endothelial progenitor cells in the peripheral blood 
and in regeneration of blood vessels [39,40]. Patients with coronary 
artery disease have low level of endothelial progenitor cells marked as 
CD34+/VEGFR-2+ and treating these patients with statins increased 
significantly (doubled) their level after 7 days of treatment [41].

There are medications that block angiogenesis, like angiostatin and 
endostatin – that block blood vessels' regeneration [42]. There are some 
ideas how to detach stem cells from their niches, like using chemokine 
receptor number 4 (CXCR4) inhibitor (Blum et al. Cytotherapy 2009) 
or activating metalloproteinases that break the bridges between the 
cells and the connective tissue [43,44]. 

It is known that diabetes mellitus (DM) is a dominant involvement 
of the cardiovascular system. Impaired angiogenesis, oxidative stress, 
and inflammation are all possible confounders to the complexity of DM 
and its cardiovascular complications. Oxidative stress is considered 
a critical factor in endothelial progenitor cells’ dysfunction. It was 

means that those endothelial cells belonged to the recipient's blood 
vessels [17]. However, colonies of endothelial cells that appeared later 
on had phenotypic characteristics of the donor, and they had the ability 
to proliferate 1000 fold in 27 days, while early growth cells could not 
proliferate in the same rate. The other explanation is that we may find 
several kinds of young early endothelial cells in the peripheral blood, 
some of them originate in the bone marrow and others from the 
endothelium of the peripheral blood vessels. In order to distinguish 
between the different kinds of cells we have to use functional markers 
like growth in culture and the morphology of the colony in order to 
distinguish between the origins of these 2 groups of cells that we find in 
the peripheral blood [18,19]. 

The general consensus is that most of the regenerative cells that 
build new blood vessels and repair damaged ones originate from the 
bone marrow and most of them (>90%) express markers of vascular 
endothelial growth factor receptor (VEGFR-2), CD34, and CD45 – a 
marker that characterizes mature endothelial cells [20], and 7 days 
in culture (fibronectin plated plates) markers of von Willebrand 
Factor appeared [21]. With time, it has become evident that CD34+/
VEGFR-2+ cells behave like a population of cells that are defined as 
endothelial stem cells. However, many mature endothelial cells possess 
both markers on their cell's surface, and there was a need to refine the 
definition. Another marker of stem cells is CD133, a glycoprotein that 
its function is not completely clear, but defines hematopoietic stem 
cells with pluripotency ability to differentiate into different kind of cells 
[22]. CD133 is expressed solely on stem cells and not on mature cells 
[23], and it has been shown that cells that express both CD34+/CD133+ 
proliferate and create colonies of endothelial cells [23-25]. Another 
population of cells are defined by CD34+/VEGFR-2+/CD133- and they 
a limited ability to differentiate and become mature endothelial cells 
(Figure 1) [26]. 

Endothelial progenitor cells’ mobilization 
In order to be efficient, stem cells must have the ability to 

 

Figure 1. The development of the Endothelial Progenitor Cell from hematopoietic stem cells.
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found that high mobility group box-1 (HMGB-1) was upregulated 
in in serum and bone marrow in diabetic mice. Advanced glycation 
and productions (AGEs) induced expression of HMGB-1 in EPCs. 
Inhibition of the oxidative stress with N-acetylcysteine (NAC) inhibited 
HMGB-1 induced by AGEs. HMGB-1 may play an important role in 
diabetes induced oxidative stress in EPCs and may be an important 
part of the mechanistic pathway that leads to cardiovascular disease in 
DM [45].

Endothelial progenitor cells and cancer
Studies have shown that endothelial progenitor cells are activated 

and are involved in angiogenesis and vasculogenesis in cancer, mainly 
in the stage of sending metastases. The belief is that this process takes 
place before we can document clinical invasion to remote places 
(metastases) [46-50]. There are 2 theories on that subject – one theory 
claims that these endothelial progenitor cells invade the endothelial 
cells of the tumor itself, and the other, that these cells invade the 
area around the tumor and secrete peptides and growth factors that 
encourage angiogenesis. For example, granulocyte colony stimulating 
factor (G-CSF) upregulates vasculogenesis and angiogenesis, and at 
the same time has been shown to enhance the cancerous process [51]. 
Cancerous cells proliferation is dependent on blood vessels' supply and 
knockout mice without the Id peptides can’t grow cancer tumors in 
their bodies because of lack of vascular supply [52]. These knockout 
mice survived longer than mice without this genetic change [53]. On 
the other hand, when stem cells were injected from healthy donors 
(healthy mice) to these knockout mice it improved vessels' growth and 
the cancer cells started to proliferate in the same rate as normal mice 
[53].

Radiation therapy during childhood cancer treatment increases the 
likelihood to develop cardiovascular disease in adulthood. EPCs may be 
affected by radiation and may affect future vascular outcome. A study 
by Pradhan et al. has demonstrated that endothelial colony forming 
cells (ECFCs) and circulating endothelial cells (CECs) were both 
inhibited among survivors of childhood cancer with radiation therapy. 
It was suggested that ECFCs could be biomarkers of vascular injury 
and may help to identify survivors at risk for adulthood cardiovascular 
disease [54].

Endothelial progenitor cells in cardiovascular diseases
Endothelial progenitor cells were penetrated the endothelium of 

blood vessels surrounding the infarct zone in the myocardium [55]. 
Athymic rats that had myocardial infarction were implanted human 
CD34+ cells that were treated before transplantation with G-CSF 
developed much more vasculature around the infarct zone, much 
more than rats that were not transplanted with these cells [16]. Human 
endothelial cells were detected within the infarct zone of the rat and 
that is a proof to the ability of transplanted cells to be involved in 
vasculogenesis post myocardial infarction. It was also found that the 
apoptosis in the infarct zone was significantly diminished in rats that 
were transplanted CD34+ cells [16].

Endothelial progenitor cells in regeneration of blood 
vessels

Atherosclerosis is a degenerative process that leads to endothelial 
damage and dysfunction. It is a long standing process that is 
accelerated and aggravated in conditions like hypertension, smoking, 
hyperlipidemia, ageing and in postmenopausal women. These processes 
cause chronic inflammation, endothelial damage and dysfunction, 

and atherosclerotic plaques [55]. In parallel free oxygen radicals cause 
apoptosis which accelerates even more the atherosclerotic process 
[56-58]. In the past it was believed that the regeneration process and 
"damage control" was handled by resident cells so that the next-door 
cells secreted factors that "treated" the damaged endothelium and 
supplied the necessary supplies for regeneration [59]. Now it has been 
proved that regeneration of damaged endothelial cells is conducted by 
endothelial stem cells that originate from the bone marrow's niches 
and from resident stem cells (stem cells that reside in the vascular bed 
and are located within the vessel wall) [60]. Healthy rodents that were 
treated with statins had a faster repair of damaged endothelium, and 
the stem cells number in the circulation of these rodents that were 
treated with statins was significantly elevated. The stem cells of rodents 
that were treated with statins were more potent and responded more 
vigorously to ischemia, and tended to reach damaged endothelium 
faster and more appropriately [61,62].

Apo E-/- mice are used as a model for aggressive atherosclerosis. 
When endothelial progenitor cells were injected to these knockout 
mice their atherosclerosis was less aggressive compared to the control 
animals [63]. No change was observed in cholesterol level but the rate 
of endothelial cells regeneration was significantly faster. 

Age is also affecting the functional ability to regenerate and repair 
damaged blood vessels. Endothelial progenitor cells taken from young 
Apo E-/- mice were more potent and had a better ability to regenerate 
damaged endothelium than stem cells taken from old Apo E-/- mice. 
The telomeres of the intima cells of Apo E-/- mice were longer when 
they were transplanted endothelial progenitor cells from young mice – 
another proof that supports previous studies that found an association 
between aging and the endothelium, aging and endothelial dysfunction 
and aging and atherosclerosis [64]. These studies teach us about the 
importance of endothelial stem cells in vascular regeneration and 
the general phenomenon of aging – older animals are more prone to 
develop atherosclerosis because an impairment in their endothelial 
progenitor stem cells' function.

In humans, subjects with conditions that lead to atherosclerosis 
(like diabetes mellitus or hypercholesterolemia) have less endothelial 
progenitor cells and their function is impaired [65-68]. In healthy 
human subjects there is an inverse correlation between the risk of death 
(the Framingham score) and the ability to build colonies of endothelial 
progenitor stem cells in culture from the peripheral blood [19]. Levels 
of the endothelial progenitor cells in the peripheral blood predicted 
vascular reactivity – an expression of endothelial function, and 
could predict better than the traditional risk factors the risk of future 
cardiovascular events and death [19]. These cells taken from patients 
with cardiovascular risk factors demonstrated accelerated senescence 
and higher rate of apoptosis [19]. One of the hypotheses is that there is 
a certain limit to the bone marrow to produce and mobilize stem cells 
in extreme conditions, and after a certain stage there is a general state 
of exhaustion of the bone marrow without any more ability to produce 
and mobilize these cells to areas of need. This theory is supported by 
studies in an animal model (Apo E-/- mice) that had smaller numbers of 
endothelial progenitor cells with an impaired function – a progressive 
condition that aggravated with time [63,64].

Preservation of the vascular endothelium is also kept by endothelial 
progenitor cells. These cells have been shown to incorporate into 
regenerated endothelium of damaged blood vessels [69] incorporating 
into small vessels of the implanted organ with regeneration of new 
blood vessels in the transplanted organ [70,71]. 
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Human studies demonstrated that patients with recurrent 
restenosis of the coronary arteries had lower numbers of endothelial 
stem cells compared with patients who did not have recurrent stenosis 
and had fewer events of restenosis [72,73].

Exosomes, a key component in paracrine secretion may have 
a protective effect in vascular disease. Recently Li et al. [74] found 
that EPC-derived exosomes accelerated re-endothelialization after 
endothelial damage in a rat carotid artery. They also improved 
migration and proliferation of endothelial cells and may enhance 
vascular repair following endothelial injury [74].

Stem cells’ transplantation in acute myocardial 
infarction (AMI) 

Several human clinical trials have transplanted endothelial 
progenitor cells into the myocardium by injecting the cells into 
the coronary circulation during an acute myocardial infarction - 
Transplantation of progenitor cells and regeneration enhancement 
in acute myocardial infarction (TOPCARE-AMI) [75-77], that have 
demonstrated improved ejection fraction of 6% to 9%, with a reduction 
in end systolic diameter 6 months post transplantation. These studies 
have demonstrated that an autologous stem cells injection into the 
coronary arteries is a safe and a feasible procedure in patients with an 
acute myocardial infarction in the acute phase and enables improved 
function of the heart and of the patient's functional score. The 
functional improvement resulted from improved function of the area 
in the myocardium that was damaged during the myocardial infarction. 

In another clinical study endothelial progenitor cells were injected 
twice after an AMI - Reinfusion of Enriched Progenitor Cells And 
Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) 
[79] - and a significant improvement was found in ejection fraction, in 
lowering recurrent ischemic events, in re-infarction, and in the need 
for re-vascularization in patients who had stem cells transplantation 
compared to the non-transplanted patients even 1 year after the AMI 
and the transplantation. The patients who gained the most were those 
with lower than 48.9% ejection fraction. These patients had the most 
significant improvement in ejection fraction of the left ventricle and in 
clinical hemodynamic parameters. It means that more clinically severe 
patients gain more from this procedure. 

A study that compared between 2 kind of cells – autologous whole 
white blood cells of bone marrow and endothelial progenitor cells 
from the peripheral blood –transplanted into the coronary arteries 
4 days after opening an artery during an acute myocardial infarction 
(primary PCI) – found no difference in improvement in left ventricular 
ejection fraction 4 and 12 months post AMI (TOPCARE study) [80]. 

Another study where autologous whole white blood cells or endothelial 
progenitor cells were injected 3 months post AMI into the coronary 
system – found a better response to the autologous whole white cells 
of the bone marrow in improving the left ventricular ejection fraction 
[76].

A meta-analysis of 18 clinical stem cells transplantation trials (cell 
transplantation to the heart) that included 999 patients found that left 
ventricular ejection fraction was improved with a reduction of end 
systolic diameter [78]. Objective parameters were improved much 
better than the conventional treatment and an MRI follow up study of 
these patients found that the scar tissue was significantly smaller and in 
general, the end diastolic volume of the left ventricle was smaller with 
an improved regional contraction in the scar zone and in the function 
of the left ventricle [78]. 

Timing of transplantation is another issue – with no definite 
conclusions – but the REPAIR-AMI study found no improvement in 
ejection fraction and other parameters in patients transplanted up to 4 
days post AMI, but a later transplantation (between days 4 and 8 post 
AMI) showed a better ejection fraction of the left ventricle [79]. 

A human study found that age and coronary artery disease impaired 
the function of circulating angiogenic cells (CACs) [80]. CACs are 
peripheral blood cells whose functional capacity was found to inversely 
correlate with cardiovascular risk. Chen et al. found that transduction 
of endothelial nitric oxide synthase (eNOS) gene cDNA adenovirus 
increased nitric oxide production, migration, and cardiac function of 
post myocardial infarction mice implanted with CACs. This finding is 
especially important for improving the efficiency of older donors, and 
eNOS gene therapy in CACs from old donors to patients with coronary 
artery disease may improve autologous cell therapy outcome [80].

Stem cells transplantation in unstable angina pectoris
Intra-myocardial injection of CD34+ cells was performed in 

167 patients with severe unstable angina pectoris using endocardial 
electromagnetic mapping system (ACT-45CMI study) [80]. Following 
the transplantation there was a decrease in the frequency of chest pain 
within 6 and 12 months with a significant improvement in exercise 
ability and a significant decrease in mortality. In another group of 24 
patients with unstable angina pectoris CD34+ cells were injected after 
an upgrade of the cells with G-CSF in vitro. Patients who got the cells 
had a decrease in the frequency of their chest pain – in the intensity 
and frequency – with a decrease in the use of nitroglycerin and a better 
exercise performance compared to patients who got placebo [81]. In 
another study CD34+ cells were injected through the coronaries to 112 
patients with severe unstable angina pectoris and this treatment helped 
to improve clinical chest pain and exercise time [82].

In another study with 28 patients with severe stable angina pectoris 
who had no further optional treatment 1 or 2 million cells (autologous) 
were injected to the myocardium in a placebo controlled study. It was 
found that all patients that were treated with cells responded with a 
better clinical angina syndrome, improved their quality of life, and 
in the exercise tolerance [83]. More studies support these findings 
[80,84-86], but it seems now that the injection approach and method 
are important for the success of the intervention. The most reliable 
and effective approach is intra-myocardial injection of cells guided by 
the NOGA system [NOGA-XP Cardiac Navigation System (Biologics 
Delivery Systems Group of Cordis Corporation, a Johnson & Johnson 
company; Irwindale, Calif)] [81]. 

Summary
"Stem cells therapy is the new generation antibiotics"…the 

regenerative medicine and stem cells transplantation has become one 
of the most promising and fascinating field in medicine with a lot of 
hope and promises.

In cardiovascular medicine stem cells transplantation seems to be a 
very attractive alternative to the present management of patients with 
heart disease and heart failure, and also in prevention of atherosclerosis.
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