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Abstract
Motor cortex stimulation provides an alternate approach for intractable pain treatment. Optogenetic manipulation can produce gain- or loss-of-function in specific 
type of cells following light application. This state-of-the-art technology may be used in motor cortex stimulation to produce circuit-specific neuromodulation and 
regulate neuronal activities in motor cortex, thereby treating pain in the clinic. Here, we discuss the principle of optogenetics-mediated motor cortex stimulation and 
discuss its potential application in the treatment of chronic neuropathic pain.

Introduction
Motor cortex stimulation (MCS) has been used since 1991 to treat 

chronic neuropathic pain [1]. Electrical stimulation of the primary 
motor cortex has been demonstrated to suppress neuropathic pain in 
different animal models [2-6]. In the clinic, use of invasive electrical 
or non-invasive transcranial magnetic stimulation of primary motor 
cortex has been reported for alleviation of intractable chronic pain 
[7-11]. However, the mechanisms underlying the antinociceptive 
effect of MCS remain poorly understood. Moreover, most regions 
of the brain contain several subtypes of excitatory and inhibitory 
neurons. Activation or inhibition of each cell type would produce 
different functional responses, but MCS, while temporally precise, 
indiscriminately affects cellular elements throughout a volume of tissue. 
The ideal clinical neuromodulation tool would allow for restoration 
of physiologic neural activity in a selected pathologic circuit without 
affecting normal circuits.

MCS-produced analgesia
Previous studies have demonstrated that stimulation-produced 

analgesia is mediated by neuronal modulation in the central nervous 
system (CNS), including periaqueductal gray (PAG) [12-14]. MCS 
exerts pain treatment by modulating neuronal activities in the CNS. It 
has been suggested that PAG is one of the candidates which mediate the 
antinociception of MCS. In a human positron emission tomographic 
study, the increase in cerebral blood flow during MCS appears in 
several brain areas, including the midbrain [15]. Moreover, a long-
lasting increase in cerebral blood flow following MCS is observed in 
the PAG [16]. After MCS, the number of positive Fos-immunoreactive 
neurons increases in the PAG [3]. 

Dopaminergic signaling in descending pain modulation
Monoamines, including serotonin, norepinephrine, and 

dopamine, act via their different receptors to exert a complex 
modulation of neurotransmitter release from nociceptive afferents. 

These monoaminergic systems play important roles in descending 
pain modulation [17]. They may exert either antinociceptive or 
pronociceptive effect according to the type of receptor involved and 
crosstalk between descending and local neurochemical signals [18]. 
The overall balance between inhibitory and excitatory supraspinal 
signals mediated by monoamines provides the basis for top-down 
modulation of pain sensation. 

In the ventrolateral PAG, a group of dopaminergic neurons 
project to several brain areas, while some of them only have local 
projections within the PAG [19,20]. The sensory function, especially 
pain sensation, can be regulated after manipulating dopaminergic 
neurons in the PAG. Injection of apomorphine, a dopamine receptor 
agonist, into the ventrolateral PAG causes a robust antinociception, 
which is inhibited by the D2 receptor antagonist eticlopride but not 
the D1 receptor antagonist SCH-23390 [21]. However, D1, but not 
D2, receptor antagonism following infusions of dopaminergic ligands 
into the PAG attenuates opiate-induced analgesia in a dose-dependent 
manner [22]. These results suggest that PAG dopamine system plays 
an important role in pain modulation and different types of dopamine 
receptors may contribute to distinct pain signaling.

Mechanism analysis of MCS-produced analgesia by 
optogenetics

The recent development of optogenetics, a revolutionary research 
tool, combines the delivery of light of specific wavelengths (opto) with 
the introduction of genes encoding for light-sensitive transmembrane 
channels (genetics) and makes possible highly precise spatial and 
temporal control of specific neuronal populations [23]. Optogenetic 
neuromodulation has already proven its value to clinicians by providing 
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novel insights into mechanisms of current clinical tools as well as 
circuit level disease pathophysiology. Optogenetics is uniquely useful 
in unraveling neuronal circuits in the CNS by enabling reversible gain- 
or loss-of-function of discrete populations of neurons within restricted 
brain regions. This state-of-the-art technology can produce circuit-
specific neuromodulation by overexpressing light-sensitive proteins 
(opsins) in particular cell types of interest. This is accomplished either 
by the use of viral vectors that infect only certain types of neurons 
through cell type-specific promoters, such as calcium/calmodulin-
dependent protein kinase IIα, which will localize optogenetic proteins 
to excitatory neurons [24], or by targeted use of viral vectors that 
express their transgenes in a Cre-dependent manner [25] (Figure 1).

The most extensively used light-sensitive proteins are 
channelrhodopsins (e.g., channelrhodopsin-2), which are light-gated 
cation channels. These channels open when activated by blue light 
(~472 nm) and are used to induce neuronal excitation. Oppositely, 
neuronal inhibition can be achieved via the expression of halorhodopsin 
(e.g., eNpHR3.0), a chloride pump activated by yellow light (~590 
nm) [26,27]. By expressing both proteins within the same neurons, it 
is possible for us to study the behavioral consequences of activating 
or inhibiting the same ensembles of neurons [27]. We may use Cre-
inducible AAV-mediated light-sensitive protein overexpression in 
combination with mice that express Cre recombinase in different types 
of dopamine receptors under D1 or D2 promoter (D1-Cre and D2-Cre 
transgenic mice) [28] to investigate the effect of activation or inhibition 
of different dopaminergic neurons in the primary motor cortex on 
descending pain modulation.

Conclusions
Motor cortex stimulation (MCS) exerts pain treatment by 

modulating neuronal activities in the central nervous system. 
The emergence of optogenetics technology facilitates widespread 
applications for interrogation of complex neural networks, such 
as activation of specific neuronal pathways, previously found 
impossible with electrical stimulation. Consequently, optogenetic 
neuromodulation has led to findings of significant importance both 
during normal brain function as well as in different diseases. Future 
studies could utilize the novel technique to determine whether different 
dopaminergic neurons play distinct roles in MCS-induced descending 
pain modulation. Those studies will provide experimental evidence 
to demonstrate the role of endogenous dopamine system in MCS-
produced analgesia.
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