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Abstract
Live-cell assays are used to study the dynamic functional cellular processes in High-Content Screening (HCA) of drug discovery processes or in computational biology 
experiments. The large amount of image data created during the screening requires automatic image-analysis procedures that can describe these dynamic processes. 
One class of tasks in this application is the tracking of cells. We describe in this paper a fast and robust cell tracking algorithm applied to High-Content Screening in 
drug discovery or computational biology experiments. We developed a similarity-based tracking algorithm that can track the cells without an initialization phase of 
the parameters of the tracker. The similarity-based detection algorithm is robust enough to find similar cells although small changes in the cell morphology have been 
occurred. The cell tracking algorithm can track normal cells as well as mitotic cells by classifying the cells based on our previously developed texture classifier. Results 
for the cell path are given on a test series from a real drug discovery process. We present the path of the cell and the low-level features that describe the path of the 
cell. This information can be used for further image mining of high-level descriptions of the kinetics of the cells.

Introduction
The utilization of dynamic High-Content Analysis approaches 

during preclinical drug research will permit to gain a more specified 
and detailed insight into complex sub-cellular processes by the use 
of living cell culture systems. This will effectively support future drug 
discoveries leading to a great outcome of highly specific and most 
effective drugs that come along with a well improved compliance. Live-
cell assays are therefore used to study the dynamic functional cellular 
processes in High-Content Screening of drug-discovery processes or 
in computational biology experiments. The large amount of image 
data created during the screening requires automatic image analysis 
procedures that can automatically describe these dynamic processes. 
One class of tasks in this application is the tracking of the cells, the 
description of the events and the changes in the cell characteristics, so 
that the desired information can be extracted from it based on data-
mining and knowledge-discovery methods. 

There are several tracking approaches known that track a cell 
by detection in each single frame and associate the detected cells 
in each frame by optimizing a certain probabilistic function [1]. 
Other approaches track cells by model evolution [2]. This approach 
seems to be able to handle touching and overlapping cells well but is 
computational expensive [3].

We propose in this paper a similarity-based approach for motion 
detection of cells that is robust and fast enough to be used in real world 
applications. The algorithm is based on a specific similarity measure 
that can detect cells although small changes in morphology appeared. 
The algorithm can track normal cells as well as mitotic cells. In Section 
2 we review related work. The material is given in Section 3 and the 
basic constraints of the algorithm resulting from microscopic life-cell 
images are explained. The algorithm is described in Section 4. Results 
are given on a test series from a real drug-discovery process in Section 

5. The features that describe the extracted path are explained in Section 
6. Finally, we give conclusions in Section 7.

Related work
Li et al. [4] proposes a system that combines bottom-up and top-

down image analysis by integrating multiple collaborative modules, 
which exploit a fast geometric active contour tracker in conjunction 
with adaptive interacting multiple models motion filtering and 
spatiotemporal trajectory optimization. The system needs ten frames 
to initialize its parameters. If the numbers of frames in a video are 
high this is expectable otherwise it is not. Cells that have not been 
recognized in the initial frame are not considered anymore. The system 
cannot track new appearing cells and it has a high computation time. 
The evaluation of the categorical analysis shows that it has a high rate 
of false detection of mitosis and new cells. Swapping of cell identities 
occurred mostly in densely populated regions, where the boundaries 
between cells are highly blurred. This arises the question why to use 
snakes for tracking the cells.

In Sacan et al. [5], a software package is described for cell tracking 
and motility analysis based on active contours. Since snakes relies on 
the assumption that the movement and deformation of the tracked 
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object is small between consecutive frames they propose like an 
ensemble of different tracking methods in a coarse to refined fashion 
in order to make their method more robust. Their combined method 
performs the following steps: the overall displacement and rotation of 
the object is first determined using a template matching method. The 
resulting contour is used as the initial state to pyramidal Lucas–Kanade 
optical flow-based deformation; statistical outlier detection and local 
interpolation is applied to achieve resistance against errors in the 
optical flow evaluation. They report that the ensemble method achieves 
accurate tracking even for large displacements or deformations of 
the objects between frames but a deep evaluation of the method is 
not given in the paper. The speed, area, deformation, trajectory and 
detailed tracking of the cells are computed and displayed for analysis. 
Besides automated cell detection and tracking capability, the interface 
also allows manual editing to initialize or modify the tracking data. The 
software can be used to work with movie or image files of a variety of file 
formats. The tracking results can be exported either as raw text data for 
further numerical analysis, or as movie or image files for visualization, 
sharing and publishing. Cell lineage is not reported in the paper.

In Wang et al. [6] is reported a system that can segment, track, and 
classify cells into cell types such as interphase, prophase, metaphase 
and anaphase. They use the distance transform to binarize the image 
and seeded watershed transformation to detect the cell area. The 
tracking path is determined by using local tree matching method. 
Graph matching approaches require large computation time. For 
each cell are calculated a large set of features such as texture, shape, 
gray level. The relevant feature set is determined by using a feature 
selection procedure. On-line support-vector machine is used to classify 
the nuclei. This approach is able to adapt the classifier to changing 
appearances of the objects.

Cohen et al. [7] propose an algorithmic information theoretic 
method for object-level summarization of meaningful changes in 
image sequences. Object extraction and tracking data are represented 
as an attributed tracking graph (ATG), whose connected sub graphs 
are compared using an adaptive information distance measure, aided 
by a closed-form multi-dimensional quantization. The summary is the 
clustering result and feature subset that maximize the gap statistic.

In Maška et al. [10] the coherence-enhancing diffusion filtering 
is applied on each frame to reduce the amount of noise and enhance 
flow-like structures. Then, the cell boundaries are detected by 
minimizing the Chan–Vese model in the fast level set-like and graph 
cut frameworks. To allow simultaneous tracking of multiple cells over 
time, both frameworks have been integrated with a topological prior 
exploiting the object indication function.

Magnusson et al. [11] propose a global track linking algorithm, 
which links cell outlines generated by a segmentation algorithm into 
tracks. The algorithm adds tracks to the image sequence one at a time, 
in a way which uses information from the complete image sequence in 
every linking decision. This is achieved by finding the tracks which give 
the largest possible increases to a probabilistically motivated scoring 
function, using the Viterbi algorithm. 

Padfield et al. [12] present a general, consistent, and extensible 
tracking approach that explicitly models cell behaviors in a graph-
theoretic framework. They introduce a way of extending the standard 
minimum-cost flow algorithm to account for mitosis and merging 
events through a coupling operation on particular edges. They show 
how the resulting graph can be efficiently solved using algorithms such 
as linear programming to choose the edges of the graph that observes 

the constraints while leading to the lowest overall cost. 

Dongmin et al. [13] propose an optical flow method for automatic 
cell tracking. The key algorithm of the method is to align an image to its 
neighbors in a large image collection consisting of a variety of scenes. 
Considering the method cannot solve the problems in all cases of cell 
movement, another optical flow method, SIFT (Scale Invariant Feature 
Transform) flow, is also presented. The experimental results show that 
both methods can track the cells accurately.

We wanted to have a cell tracking method that can use an operator 
at the cell line without an initialization phase or heavy human 
interaction. The method should be fast and robust enough and should 
not have any subjective human interaction. Based on our observation, 
we concluded that it must be possible to track the cells by identifying the 
same cell from one image to the next image. Therefore, we introduced 
a similarity-based approach [20] for cell tracking. This idea has been 
overtaken later on by Padfield et al. [8] and by Kan et al. [9]. Both 
approaches [8, 9] do not evaluate their approach with our approach.

Padfield et al. [8] use spatiotemporal volumes in order to keep 
track of moving cells over time. The methods uses a standard level 
set approach for segmentation to extract the G2 phase nuclei from 
the volume and a Euclidean distance metric for linking between the 
G2 phases across the other phases. The level-set approach allows 
recognizing cells at different granularity level but will not prevent the 
algorithm to detect changing morphology. The Euclidean distance is a 
simple similarity measure that does not take into account the specific 
characteristics of visual objects.

Given an estimate of the cell size only, the method of Kan et al. [9] 
is capable of ranking the trackers according to their performance on 
the given video without the need for ground truth. Using the cell size 
for tracking is a simple measure that is included in our application as 
well.

These two methods [8,9] cannot track normal cells as well as 
mitotic cells as in our proposed approach. The Euclidean distance 
used as similarity measure in Kan et al. [10] is not robust enough to 
handle changing cell morphology as it is in our case. We use a very 
flexible similarity measure [17] that considers the similarity of the 
corresponding pixels as well as the similarity to its surrounding pixels 
and therefore can handle morphological changes from one time-frame 
to the following time-frame. Cells that appear new in the microscopic 
image window can be tracked as well.

Material and investigation of the material
The live cell movies are comprised of a sequence of 113 images. 

These images are taken in a time interval of thirty minutes. The whole 
experiment runs over two and a half days. The cells show no steady 
movement. They might suddenly jump from one direction to the 
opposite one. The cells might also turn around their own axis that will 
change their morphological appearance. They also might appear and 
disappear during the experiment as well as re-appear after having gone 
out of the focus of the microscope. It is also highly likely that the cells 
might touch or overlap. The tracking algorithm should run fast enough 
to produce the result in little computation time.

The following conditions have been decided for the algorithm: 
Only cells that are in focus should be tracked (background objects are 
not considered). Fragmented cells at the image borders are eliminated. 
Each detected cell gets an identity label and gets tracked. Disappearing 
cells are tracked until they disappear. Newly appearing cells are tracked 
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upon their appearance and get a new identity label. Cells overlapping 
or touching each other are eliminated. They are considered as 
disappearing cells. Splitting cells are tracked after splitting and both 
get an identity label that refers to the mother cell. Cell fragments are 
eliminated by a heuristic less than 2xSigma of Cell Size. Note that we 
decided to exclude overlapping cells for the reason of the resulting 
higher computation time. If we want to consider this kind of cells, 
we can use our matching algorithm in [15] to identify the portion of 
touching cells belonging to the cell under consideration.

The object-tracking algorithm
The unsteady movement of the cells and the movement of the cells 

around their own axis required special processing algorithms that are 
able to handle this. The successive estimation of the movement based 
on mean-shift or Kalman filters [15] would only make sense if we can 
expect the cells to have steady movement. Since it can happen that the 
cells jump from one side to another, we used a search window around 
each cell to check where the cell might be located. The size of the search 
window is estimated based on the maximal distance a cell can move 
between two time frames. The algorithm searches inside the window 
for similar cells. Since we cannot expect the cell to have the same shape 
after turning around its own axis and as also the texture inside the cell 
might change, we have chosen a similarity-based procedure for the 
detection of the cell inside the window. The overall procedure is shown 
in Figure 2.

Overall algorithm

The image gets threshold by Otsu`s well-known segmentation 
procedure. Afterwards the morphological filter opening by a 3x3 
window is applied to close the contour and the inner holes. Fragmented 
cells at the image borders as well as small remaining objects of a size of 
ten pixels are deleted. The cells at the image borders are only tracked 
when they fully appear inside the image. Around the object is drawn 

the convex hull and remaining holes or open areas inside the cell 
area are closed by the operation flat-fill. The resulting images after 
these operations are shown in Figure 3 for the six time frames. This 
resulting area is taken as the cell area and the area with its grey levels is 
temporarily stored as template in the data base. 

Then the center of gravity of the object is determined and the search 
window is tentatively spanned around the object. A raw estimation of 
the cell’s movement direction is calculated by the mean-shift filter over 
3 frames. In the resulting direction is started the search for similar cells. 
Cells fragmented by the window border are not considered for further 
calculation. Each cell inside the window is compared by the similarity 
measure to the respective template of the cell under consideration. 
Before the similarity is determined the cells are aligned, so that they 
have the same orientation. The cell having the highest similarity score 
to the template is labeled as the same cell moved to the position x,y in 
the image t+1. The template is updated with the detected cell area for 
the comparison in the next time frame. The position of the detected 
cell is stored into the data base under the label of the template. Mytotic 
cells are detected by classifying each cell based on the texture descriptor 
given in [16] and the decision tree classifier.

Let CBtB be the cell at time-point t and CBt+1B the same cell at time 
point t+1.  Then the rule for labeling a cell as “disappeared” is: IF CBtB 
has no CBt+1B THEN Disappearing Cell. 

Similarity determination between two Cells

The algorithm [17] computes the similarity between two image 
areas A and B these images are in our case the bounding box around 
each cell (see Figure 4). According to the specified distance function, 
the proximity matrix is calculated, for one pixel at position r,s in image 
A, to the pixel at the same position in image B and to the surrounding 
pixels within a predefined window. Then, the minimum distance 
between the compared pixels is computed. The same process is done 
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 Figure 1. Time Series of Image of a Live Cell Project.
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Figure 2. Flowchart of the algorithm.
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Figure 3. Image after Thresholding and Morphological Filtering.
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for the pixel at position r,s in image B. Afterwards, the average of the 
two minimal values is calculated. This process is repeated until all the 
pixels of both images have been processed. The final dissimilarity for 
the whole image is calculated from the average minimal pixel distance. 
The use of an appropriate window size should make this measure 
invariant to scaling, rotation and translation.

The resulting similarity value based on this similarity measure for 
the pairwise comparison of cell_ 1 to cell_1, cell_1 to cell_2, and cell_1 
to cell_3 in the preceding time frame is given in figure 6. The lowest 
similarity value is obtained when comparing cell_1 to cell_1 in the 
proceeding time frame.

Results of tracking algorithm
Results in Figure 7 a-e show the tracking path of six different cells. 

We compared the manually determined path of a cell from an operator 
of the High-Content Screening Process-line with the automatic 
determined path by the tool IBaI-Track for 10 videos with 117 frames 
each. If both methods gave the same path we evaluated it as positive 
otherwise as negative. We observed a correspondence between these 
two descriptions of 98.2 %. The computation time for a sequence of 117 
images of 674x516 pixels each and on average 80 cells per image is 11 
minutes 42 seconds on PC with 1.8 GHz. 

Information extracted from the path

The output of the cell-tracking algorithm is a tuple of coordinates 
for each cell that describes that path of the cell (Figure. 7a-7e and 

Figure 8). Biologists want to study the kinetics of the cells. Therefore, 
we have to extract features from this path that describe the motility and 
velocity of a cell. Table 1 shows features that are used to describe the 
path of a cell [18]. These features (Table 2) are provided in a table to 
the biologist for further study. Please note, one image contains many 
cells. As result, we obtain a bunch of numerical values for one image 
that is hard to overlook for a human. More high-level descriptions 
are necessary that summarize these features and their feature values 
in more compact information about the kinetics of the cells in one 
image. Recently, biologist use statistical tools to study these features. 
More complex image mining methods such as decision tree induction 
and conceptual clustering [19] can be of help in order to bring out the 
higher-level descriptions.

Conclusions
We have presented our new cell-tracking algorithm for tracking 

cells in dynamic drug discovery or computational biology experiments. 
The algorithm uses a window around the position of the cell in the 
preceding time frame for searching for the next position of the cell. 
This is necessary since the movement of the cells cannot be steady. The 
search inside the window is started in the expected direction of the cell. 
To calculate this direction, we use a mean-shift filter over 3 time frames. 
The detection of the cell is done based on a similarity determination of 
the grey-level profile between the cells in the preceding time-frame and 
the following time-frame. The cell giving the highest similarity value is 
selected as the same cell in the following time-frame. The template is 
updated with the new cell. A similarity measure that can handle small 

 

Figure 6. Path of a Cell marked with coordinate points.
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Table 1. Measures for motility and velocity of a cell.
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changes in the morphology of the cells is used. This similarity measure 
is robust enough to detect the cell with high accuracy. The tracking 
algorithm can track normal cells and mitotic cells by our formerly 
developed classifier. Eleven features describe the path of a cell. The 
resulting data are stored in a data file and can be used for further image-
mining analysis. We propose that biologists and drug discovery experts 
think about more high-level terms to describe the events they want to 
discover since the large bunch of numerical values created during the 
tracking process is hard to overlook by a human. For that can be used 
proper image mining algorithm such as decision tree induction and 
conceptual clustering.
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Cell Number Total 
Distance
traveled

Maximum 
distance 
traveled

… … … … Mean squared 
displacement

Cell_1 X11 X12 … … … … X112
… … … … … … …
Cell_n Xn1 Xn2 … … … … Xn12

Table 2. Output of the Celltracking Tool.
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