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Abstract
Breast cancer is a complex disease with different phenotypes associated with genetic and non-genetic risk factors. An aberrant expression of the BRCA1 tumor 
suppressor as well as dysfunction of BRCA1 protein caused by germline mutations are implicated in breast cancer aethiology. BRCA1 plays a crucial role in genome 
and epigenome stability. Its expression is auto regulated and modulated by various cellular signals including metabolic status, hypoxia, DNA damage, estrogen 
stimulation. The review describes breast cancer risk factors, the BRCA1 gene expression and functions as well as covers the role of long-range genomic interactions, 
which emerge as regulators of gene expression and moderators of genomic communication. The potential long-range interactions of the BRCA1 promoter (driven by 
polymorphic variant rs11655505 C/T, as an example) and their possible impact on the BRCA1 gene regulation and breast cancer risk are also discussed.

Introduction
Female breast cancer is one of the most common cancers worldwide 

with app.1.68 million cases diagnosed annually [1]. It is a complex 
disease characterized by molecular and phenotypic heterogeneity 
observed both within populations and intra-individually, within 
single tumor cells in a spatiotemporal manner, as pointed out by 
[2]. This intra-individual molecular diversity could be reflective of 
the mutational history of tumor cells. It is hypothesized that breast 
cancer can result from clonal expansion of adult stem cells and/or stem 
progenitor cells, which became cancer stem cells by acquiring tumor 
initiating capacity [3].

Genetic and non-genetic breast cancer risk factors
A minority of breast cancers (5-10% of all cases) demonstrate 

familial clustering and have an important genetic component [4]. 
Familial relative risk (FRR) increases progressively along with the 
number of affected relatives [5]. Family history is influenced by a 
number of complex genetic mechanisms, including prenatal effects, 
mitochondrial variants, sex-liked genes and parental of origin effects 
exerted by imprinted genes. These may cause its asymmetry and skew 
the risk of breast cancer towards maternal lineage [6,7]. To date, genetic 
factors underlying the disease are not fully elucidated.

Rare, high-risk mutations in BRCA1/BRCA2 genes account for less 
than 20% of FRR. The penetrance of these mutations is incomplete, 
which suggests there may be modifiers of breast cancer risk among 
carriers of BRCA1/BRCA2 mutations [4]. To date, a total of 26 and 
16 single nucleotide polymorphisms (SNPs), bearing a small risk (in 
range 1.05-1.26) have been discovered for carriers of these mutations 
by genome-wide association study (GWAS). Many of them are 
associated with estrogen receptor (ER) status of the tumor subtype, 
reviewed by [8]. The risk of breast cancer among BRCA1 mutations 
carriers is supposed to be influenced by polymorphic variants on the 
wild-type BRCA1 allele. This could possibly occur through altering the 

efficiency of BRCA1 transcription [9]. However, to date the mechanism 
underlying effect of the BRCA1 promoter variant rs11655505 C>T 
remains unknown. 

Besides high risk BRCA1/BRCA2 mutations, moderate risk 
mutations such as those found in DNA repair genes (CHEK2, ATM, 
PALB2) also demonstrate familial clustering. They explain 2-5% of the 
FRR [10].

Common low risk SNPs identified by GWAS account for even 
smaller share of FRR. Similarly to variants identified among BRCA1/
BRCA2 mutations carriers, common SNPs display differences in genetic 
susceptibility to ER positive and ER negative tumor subtypes. This 
suggests that common mechanisms may underlie these phenotypes [8].

In summary, polymorphic variants SNPs identified to date (more 
than 70), their multiplicative effects (modeled as a polygenic score 
[PRR]), taken together with mutations in BRCA1, BRCA2, PALB2, 
ATM, CHEK2 genes account for one-third of FRR. 

Based on the data, factors identified to date, do not fully explain 
genetic susceptibility that is indicated by family history and heritability 
evidence from studies on monozygotic twins [6,10-13].

Numerous genetic variants with even lower effects on risk, omitted 
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by GWAS, might account for missing heritability. A novel approaches 
has been recently proposed, involving fine SNPs mapping for sub-
threshold loci or of reanalyzing and validating GWAS results by using 
epigenomic signatures [14,15]. 

Gaining insight into biological function of SNPs is particularly 
challenging because over 95% of the identified genetic variants fall 
into non-coding genomic regions and three-quarters of them associate 
with DNAse I-hypersensitive sites. This suggests that they lie within 
regulatory elements, known to establish long-range contacts and affects 
target genes located distally even several megabases away. Recently, 
a number of regulatory SNPs were assigned to their target in breast 
cancers, when SNPs long-range contacts were taken into account. This 
was done through linking GWAS and Hi-C analyses (whole genome 
conformation analysis based on proximity ligation followed by high-
throughput sequencing), reviewed by [16]. 

Especially noteworthy is the evidence, that the majority of breast 
cancer cases (90-95%) occur sporadically [17]. This may be linked to 
many factors including gender, age, reproductive and hormonal history, 
environmental exposure and/or life style (alcohol intake, tobacco 
smoking, diet habits (specifically high fat diet and toxine exposure) 
and other stress factors [8,18,19]. Interestingly, several disorders such 
as obesity and associated metabolic syndrome (including diabetes) are 
reported to be related to breast cancer risk [20,21]. Similarly to the risk 
of breast cancer, the risk of obesity and metabolic disorders may be 
sexually dimorphic- presumably modulated by gonadal hormones and 
by sex chromosome status (XX, XY) [22]. The broad spectrum of breast 
cancer risk factors and related disorders has been comprehensively 
discussed by [8,18].

BRCA1ness in sporadic breast cancers

BRCA1 tumor suppressor is implicated in aetiology of both familial 
and sporadic breast cancer. Almost 33% of non-familial, invasive 
sporadic breast cancer either lack or have a reduced expression of 
BRCA1 (due to somatic alternation or epigenetic silencing) and share 
the familial-BRCA1 mutated tumor’s phenotype, as reviewed recently 
by [23]. The loss of BRCA1 or its dysfunction is presumably the critical 
step for the formation of the basal-like subtype of breast cancer (BBC), a 
high-grade, aggressive tumor with lymphocytic infiltrates. The minority 
of cases (10-30%) show hypermethylation of the BRCA1 promoter [24]. 
Their transcriptomic signature is characterized by expression of genes 
mostly active in breast myoepithelial layer (basal-layer) [23], whereas 
their epigenetic characteristic is similar to those observed in embryonal 
stem cells (esc), including overexpression of pioneer transcription 
factors (Nanog, SOX2 and c-Myc) and under-expression of Polycomb-
regulated genes, as reported by [25].

A significant portion of sporadic breast cancer are estrogen receptor 
negative (ER-), similarly to familial BRCA1 mutated tumors. They tend 
to lack progesterone receptor (PR-), ERB-2 oncogen (HER2) and display 
triple-negative TN phenotype. Molecular characteristic of these tumors 
also includes genomic and chromosomal instability as stated by [26,27]. 
Chromosome X gains were observed in neoplastic transformation of 
male epithelial cells [28], whereas epigenetic instability/loss of inactive 
X chromosome frequently occurs in female basal breast cancer cases 
[29]. Similarly to other solid tumors, basal like tumors demonstrate 
heterogeneity of their tumoral microenviroment, including intra-
tumoral level of oxygen, nutrient and pH [30,31]. 

Hypoxia stress has been found to induce down-regulation of 
BRCA1 expression and this partially explains repression of the BRCA1 

gene observed in sporadic breast cancers [32]. Due to the cellular 
role of BRCA1, its deficiency may contribute to genomic instability 
and predispose cells to high risk of malignant transformations. 
Furthermore, the expression of BRCA1 has been reported to be 
required for differentiation of breast stem cells, specifically luminal 
progenitor cell (ER-negative) to mature luminal cells (ER-positive). A 
loss of BRCA1 may result in the accumulation of genetically unstable 
breast stem cells, which presumably underlie the aetiology of basal-
like breast cancers as stated by [33]. Notably, exposure to hypoxia 
has recently been demonstrated to induce breast cancer stem cells 
phenotype [34].

Transcriptional regulation of BRCA1 expression
As evidence emerged, that BRCA1 expression is downregulated 

in sporadic breast tumors many aspects of its regulation has been 
extensively studied. 

The BRCA1 gene is transcribed from the bidirectional promoter 
for BRCA1 and for lncRNA NBR2 (Neighbor of BRCA1 Number 2) 
separated by short (approximately 218 bp) intergenic region [35,36].

This transcriptional unit arose in result of segmental duplication 
during primate evolution [37]. In mice the BRCA1 gene shares 
bidirectional promoter with the gene Neighbor of BRCA1 Number 1 
(NBR1), which encodes autophagic receptor, reportedly having a role 
in maintenance of cell stemness [38-40].

The choice of transcription start sites at human BRCA1/NBR2 
promoter appears to have crucial importance for proper response of 
the BRCA1 gene to various micro-environmental stimuli, including 
genotoxic agents, DNA damage, estrogen stimulation and hypoxia. 
However, so far reported studies have focused more on cancer or 
transformed cell lines.

Hypoxia, pro-mitogenic activity of estrogens and DNA damage all 
modulate the cellular redox (NAD/NADH) ratio. As found by [41], 
an increased redox ratio uni-directionally enhances transcription from 
the BRCA1 proximal promoter (Figure 1). This occurs through the 
removal of co-repressors, including CtBP protein, (metabolic sensor 

Figure 1. Simplified scheme illustrating the impact of the cellular metabolic states on 
transcriptional activity of the bidirectional BRCA1 promoter. 
According to Di and colleagues, the redox ratio (NAD+/NADH) modulates the activity of 
the metabolic sensor and transcriptional co-repressor, carboxyl-terminal binding protein 
(CtBP). Increased NAD+/NADH ratio cause discharge of CtBP, from the BRCA1 promoter 
and unidirectional enhancement of transcription from BRCA1 transcription start site.
Liu and colleagues state that energy stress (induced by glucose starvation) activates cellular 
energy sensor, AMP-activated protein kinase, which by unknown mechanism induces 
unidirectional transcription of lncRNA from NBR2 transcription start site. LncNBR2 has 
been found to potentiate activity of AMPK under prolonged stress.
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of NAD/NADH ratio), BRCA1, HDAC from the promoter region. In 
turn, unidirectional transcription of NBR2 lncRNA can be initiated 
in response to energy stress (glucose starvation), by AMP-activated 
protein (AMP) kinase, a key sensor of cellular energy status, (Figure 
1). NBR2 lncRNA was observed to interact with activated AMPK 
kinase and it is supposed to amplify and preserve AMPK activity 
during chronic stress, which results in the repression of anabolic 
processes of mTORC1 pathway, autophagy promotion, reduction of 
cell proliferation) [42].

Interestingly, hypoxic stress decreases BRCA1 transcriptional 
activity not only by modulation of redox ratio but also by dynamic 
redistributions of E2Fs and pocket proteins at the BRCA1 promoter. 
BRCA1 expression, which shows cell-cycle related pattern [43,44] is 
E2F dependent. During normoxia, the two adjacent, conserved E2F 
sites at the BRCA1 proximal promoter, within intergenic region, 
are simultaneously occupied by E2F1 transcriptional activator 
and E2F4/p130 transcriptional repressor. Hypoxia causes p130 
dephosphorylation, an increase of  the binding of repressive complex 
E2F4/p130 to the intergenic region and the unidirectional repression of 
BRCA1 transcription [45]. 

Extended hypoxia also induces repressive histone modification 
changes, including decreased H3K4 methylation and leads to persistent 
epigenetic silencing of the BRCA1 promoter [32]. 

In turn, oxidative stress stimulates BRCA1 transcription by 
binding of an activated NRF2 transcription factor (Nuclear factor-
erythroid-2p45-related factor 2), the master of redox switch, involved 
in the Keap1-Nrf2-ARE pathway, to ARE sites (antioxidant response 
elements) at the proximal BRCA1 promoter [46].

Estrogen has been found stimulate BRCA1 transcription either 
by non-genomic mechanism (by changes in redox ratio, activation 
of MAPK cascade) or potentially by recruitment of ER alfa to the 
downstream BRCA1 promoter [47]. ER-alfa dependent activation 
can be modulated by an aromatic hydrocarbon receptor complex, 
which binds two consecutive xenobiotic-responsive elements located 
upstream of the ER-alfa binding region [48].

The regulation of BRCA1 transcription is further influenced by a 
number of other transcriptional factors, including, CREB [49], BP53 
[50], c-Myc [51].

The bidirectional BRCA1/NBR2 promoter is bound by architectural 
protein, CTCF transcription factor. The binding protects the promoter 
region against DNA methylation, maintains its accessibility for 
transcription factors and is critical for its functionality [52-54]. 

Mechanism of auto-regulation through co-residence of BRCA1, 
E2F and Rb1 at the BRCA1 promoter has been also proposed by [55].

According to the authors, BRCA1 transcription is repressed by 
BRCA1 and upregulated in response to genotoxic stress occurring after 
the disruption of co-repressors array and dismissal of BRCA1 protein. 
Subjecting the RB1 gene to genomic imprinting, that favor expression 
from maternal allele [56] adds another layer to complexity of auto 
regulation of BRCA1 transcription.

BRCA1 protein and its functions
BRCA1 protein

BRCA1 reportedly interacts with more than 100 of proteins and 

has been proposed to act as a scaffold for the assembly of different 
functional complexes, [57,58]. 

The BRCA1 C-terminal region contains two BRCT repeats, which 
constitute a phospho-peptide binding domain, contributing to most of 
BRCA1 functional interactions, including interactions with signaling 
kinases ATM, ATR and CHK2. It can be transcriptionally active when 
ligated with DNA binding domain. 

The N-terminal RING domain (with its heterodimeric binding 
partner, the BRCA1-associated RING-domain protein, BARD1) 
displays an ubiquitin/ligase activity and functions as a highly active E3 
Ub ligase in complexes with E2 ubiquitin (Ub)-conjugating enzymes.

The central, large region (60%) of BRCA1 acts as a scaffold and 
interacts directly with DNA and proteins. It is required for homologous 
recombination (HR) and checkpoint functions. Interestingly, it 
preferentially binds to G-quadruplexes and other non-B-DNA 
topologically constrained structures, which occure on numerous 
promoter regions (e.g. C-Myc, KRAS, Kit, TERT genes) and on 
telomeres [59]. 

BRCA1 functions

BRCA1 plays a critical role in multiple cellular processes required 
for genome stability and cellular homeostasis. However, the mechanism 
of how BRCA1 protein is responsible for increased risk of a breast 
cancer is not fully understood. 

BRCA1 in DNA damage response
The BRCA1 protein functions in a cellular DNA damage response 

(DDR) network, responding to genotoxic stress. The network detects, 
signals, repairs DNA/chromatin damage. It also coordinates the repair 
process with cell cycle progression and cellular metabolism or directs 
cells to apoptosis. DSBs may occur in result of DNA replication-errors, 
ionizing radiation and oxidative stress [60]. However, they may also 
be caused by programmed DSBs arising at specific locations in the 
genome during meiosis as well as during V(D)J and immunoglobulin 
heavy chain class switch recombination (CSR) [61]. Among DNA 
lesions double strand breaks (DBS) are the most harmful as they may 
induce severe detriment in DNA and chromatin organization and 
cause chromosomal translocations. The selection process between the 
two mechanisms for repairing DBS (error-prone non-homologous 
end-joining [NHEJ] and homologous recombination [HR]) depends 
on BRCA1 and on multiple factors, including DNA damage 
checkpoints, ubiquitination steps and post-translational histone 
modifications reviewed by [62]. In summary, a master sensor of DBS, 
Ataxia-Telangiectasia Mutated (ATM) kinase induces histone H2AX 
phosphorylation cascade and then a process of multi-steps recruitment 
and assembly of damage signaling and repair factors. It also drives 
chromatin modifications. The BRCA1 protein once phosphorylated 
by ATM kinase counteracts inhibitory effect of chromatin barrier, 
imposed on damage sites by BP53 and then initiates HR by activation 
of DNA resection. As recently demonstrated, BRCA1-BARD1 E3 
Ub ligase causes the repositioning of BP53 over long distance by 
promoting activity of chromatin remodeler SMARCAD1 (SWI/SNF 
Matrix-Associated Actin-Dependent Regulator Of Chromatin [63]. 
As a mediator of ATM signaling, BRCA1 activates DNA damage 
checkpoints (G2/M phase), reviewed in [64]. It is worth noting, the 
evidence suggesting that DBS repair pathways are developmentally 
regulated with HR being crucial in embryonal cells and NHEJ during 
cell cycles of differentiated cells. DBS repair by HR in primary somatic 
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Recent metabolomics and transcriptomic data further suggests that 
BRCA1 can cause reversion of aerobic glycolysis (known as a Warburg 
effect) in breast cancer cells [81]. 

Long-range interactions and regulation of genome 
functions

Genome integrity is accomplished through regulation of DNA 
replication and genes expression in the three dimensional nuclear 
spaces.

Genomic long-range interactions (>10kb) are integral for 3D 
genome organization. As proposed by [82], they can moderate 
of communication along chromosome (in cis-) and between 
chromosomes (in trans-). Bringing distant regulatory elements 
(promoters, enhancers) into spatial proximity allows for effective 
control of gene expression.

Genomic contacts are established partially by architectural 
proteins (with key role of CTCF insulator protein and cohesin) and 
are accompanied by looping out the intervening sequence, [83]. The 
interactions may be influenced by various chromatin features, protein 
cofactors and complexes, Mediator, DNA methylation and local 
RNA transcription reviewed in [84]. Interestingly, basal transcription 
machinery is known to be recruited by CTCF and cohesin [83,85] .

Long-range interactions, detected by Hi-C on chromosomes 
during interphase are observed as dynamically formed neighborhoods 
(encompassing app. 400-500 MB), referred to as Topologically 
Associated Domains (TADs), (Figure 2) [86,87]. The hierarchical 
structure of inter-TADs contacts is established and mediated by several 
factors, including architectural proteins, Mediator, tissue specific 
transcription factors and local RNA transcription [88]. Interactions 
within TADs correlate with expression levels and variability of 
chromatin states [89,90]. Transcriptionally non-active, pre-existing 
interactions are also observed. Jin and colleagues provided evidence, 
that TNF-responsive gene promoters can be juxtaposed to TNF-
responsive regulatory elements prior to stimulation [91]. The authors 
also suggest that once interactions are established in given cell they 
might influence target gene expression in cell specific manner. 

Epigenetic signatures of specialized TADs have been found to 
correlate with hormones induced gene regulation [92]. Furthermore, 
TADs reportedly align with DNA replication domains and were 
proposed to represent stable units of replication-timing regulation [93]. 
It is worth noting, that spreading of histone H2AX phosphorylation, 
induced by ATM kinase in response to DNA damage was detected 

cells appears to require BRCA1, whereas ATM kinase is dispensable as 
stated by [65].

 Other molecular processes regulated by BRCA1 
BRCA1/BARD1 heterodimer controls microtubule nucleation in 

spindle assembly and centrosome duplication during mitosis [66].

Apart from repair damage and cell cycle progression control, 
BRCA1 has other role attributed to its tumor suppression activity. It is 
supposed to exert global effects on heterochromatin integrity through 
transcriptional repression of satellite RNA (through ubiquitylation of 
histone H2A) [67]. Recent reports provide evidence that BRCA1 (in 
repressive complex with HP1 and DNMT3) may also cause global 
heterochromatin silencing through ATM dependent DNA methylation 
[68]. At heterochromatin regions, BRCA1 reportedly participate 
in protection of DNA replication and it is required for HR at stalled 
replication forks [69].

Furthermore protein has been found to function as a negative 
regulator of Polycomb- repressive complex 2 (PCR2), which is 
important for the maintenance of stem cell pluripotency and 
suppression of cell differentiation [70].

Its role in transcriptional regulation is complex. BRCA1 regulates 
transcription by association with basal transcriptional machinery 
(Polymerase II and Polymerase I holoenzymes) and by interacting and 
modulating the activity of numerous transcription factors (including 
p53, c-myc, STAT1, E2F, NF-kB, OCT-1, estrogen, progesterone and 
androgen receptors), transcriptional co-repressor and co-activators, 
(including CtBP, Rb- and Rb-associated proteins, HDAC1/2, and p300, 
HAT), chromatin remodeling complexes (specifically with BRG1-
central catalytic ATPase of ATP-dependent chromatin remodeling 
complexes SWI/SNF [64].

 Interestingly BRCA1 has been found at nuclear sub-compartments 
with transcription machinery (transcriptional factories), that cluster 
transcriptionally active or inactive genes [71]. Apart from protection 
against genotoxic stress, DNA repair proteins at transcription factories 
are also supposed to control programmed double strand breaks induced 
by Topoisomerase 2 alfa for proper transcriptional output [72]. 

Throughout the genome BRCA1 resides at a large number of 
gene promoters and regulates expression of specific subset of genes 
in response to genotoxic stress or DNA damage [73,74]. BRCA1 
transcriptional complexes regulate activity of pro- and anti-apoptotic 
genes, genes involved in growth promotion, cell cycle arrest, DNA 
repair, telomerase and interferon genes described by [58].

Its role in cellular metabolic homeostasis and reprogramming is 
not completely understood.

BRCA1 is an important negative regulator of anabolic processes 
promoted by estrogen receptor (ER) and functions in a negative 
feedback loop, (activating transcription of ER and disrupts estrogen-
ER complex) reviewed by [75]. Moreover, it modulates IGF1/PIK3/Akt 
pathway, (by transcriptional regulation of IGF1 as well as interaction 
with AKT), [76,77] and fatty acid synthesis (maintaining acetyl-CoA-
carboxylase in an inactive state) [78]. BRCA1 has been also observed to 
regulate NRF2 dependent antioxidant signaling and hypoxia response 
[binding and stabilizing NRF2 transcription factor [79] and hypoxia-
inducible factor-1α [HIF-1α] [80], respectively].

Figure 2. The fragment of Hi-C contacts map for chromosome 8 (http://www.3dgenome.
org), demonstrating hierarchical structure of TAD. Positions of TAD, sub-TAD, domain 
boundary as well as long- and shorter-range interactions between genomic regulatory 
elements are indicated.

http://www.3dgenome.org/
http://www.3dgenome.org/
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along TADs. In contrast to H2AX, ATM kinase has been found locally, 
on domains borders [94]. Based on this observation it was suggested, 
that the major role of ATM kinase in DNA damage repair may rely 
on its ability to modify both local as well as global chromosome 
organization and chromatin mobility. It is presumed that this occurs 
with contribution of actin filaments, microtubules and cohesin 
complexes. 

Although sequences within TADs interact preferentially with sites 
inside the domain, at the edge, inter-domain and inter-chromosomal 
contacts occur [95]. Borders domains, which separate TADs are 
enriched in architectural proteins including CTCF and cohesin as 
well as short interspersed nuclear elements (SINE) and tRNA genes 
[93]. Their strength can be regulated developmentally, as in case of 
the border, controlling interactions between HOXD genes and their 
regulatory elements during mouse limb development [96]. The border 
strength can also decrease in response to heat shock stress. Heat shock 
in Drosophila was reported to cause an increase of inter-domain 
and inter-chromosomal interactions between polycomb responsive 
elements and the subsequent transcriptional silencing of entire TADs 
domains [97]. Several reports and recent reviews describe the role of 
local TAD boundary disruption in establishing improper regulatory 
circuits (between oncogenes and regulatory elements) that can drive 
neoplastic growth, discussed by [98,99]. 

As reported by Naumova and colleagues [100], interphase-specific 
chromosomal organization of TADs is lost in mitotic cells and replaced 
by a series of cell-invariant, consecutive loops. Dilep and colleagues 
proposed that TADs and their long-range contacts are restablished 
during early G1cell cycle phase coinciding with the establishment 
of the replication-timing program [101]. According to Naumova 
and colleaques higher order chromatin structures that have to form 
de novo in early G1 do not themselves convey epigenetic memory 
[100]. Instead, their re-emergence in early G1 is restored by histone 
marks, DNA methylation, and protein complexes that remain on DNA 
through mitosis, e.g. at key gene regulatory elements [102] or at TAD 
boundaries [103]. In addition to polycomb group protein [102], tissue-
specific transcription factors [103] a possible role of Drosophila CTCF 
in mitotic bookmarking and maintaining chromatin domains during 
the cell cycle has been also suggested [104].

In this context it is worth to mention the recent evidence resulted 
from mapping long-range genomic interactions before and after 
reprogramming of somatic cells, that have demonstrated that specific 
long-range contacts are acquired by induced pluripotent cells in cell-
type specific-manner during reprogramming [105,106]. According to 
Gonzales and Ng  this indicates existence of topological memory in 
reprogrammed somatic cells [107]. 

Long-range contacts were also mapped and analyzed on interphase 
chromosomes, with close to single regulatory element resolution, by 
Capture Hi-C (Chi-C), which combines Hi-C methodology with 
hybridization-based capture of targeted genomic regions. These 
analyses conducted along with Pol II precipitated interactions (by 
ChiA-PET), revealed that both active and inactive genes promoters 
contact each other and form multigenic complexes with correlated 
expression levels. No bias was detected for active versus non-active 
promoters [108,109]. According to Rowley and Corces this might 
indicate the existence of so called “matrix of expression regulation” 
[98]. Noteworthy, this evidence is also consistent with phenomenon 
of clustering of co-regulated active and inactive genes observed at 
nuclear sub-compartments, such as transcriptional factories discussed 

by [72], Li and colleagues suggest, that clustering of gene promoters 
can multiply an effect of any genetic error and/or polymorphism at 
the single promoter level, depending on the cell specific factors [110]. 
Their evidence shows that the disease related SNPs are more likely to be 
found at interacting promoter regions. 

Long range interactions of the BRCA bidirectional pro-
moter

To date dynamic long distance interactions between the promoter, 
introns and terminator regions of the mammalian BRCA1 gene have 
been reported [111]. The BRCA1 promoter and terminator contacts 
have been found to suppress estrogen-induced transcription and be 
potentially linked to dysregulated expression of BRCA1 seen in breast 
tumors.

Publically available Hi-C contacts maps for chromosome 17, 
localize the BRCA1/NBR2 promoter region app. 160 kb away from the 
border of the TADs domain (in esc and IMR90 cells) (Figure S1[A]) 
(http://www.3dgenome.org). Interestingly, this border, demonstrates 
multiple inter-domain and inter-chromosomal interactions with X 
chromosomes and autosomes in MCF-7 cells (not shown), (NIH 
Roadmap Epigenomics Consortium; http://www.roadmapepigenomics.
org/). Among several tools to analyze or to visualize Hi-C data, reviewed 
recently by [112,113], Hi-C browser, by Ren lab, providesvirtual-4C 
software, that supplements Hi-C data with DHS linkage and CHiP-
Seq evidence (http://www.3dgenome.org). The software visualized 
cis- regulatory potential of SNP rs11655505 (C/T), at the bi-directional 
BRCA1 promoter (Figure S1[B]) to establish long-range (>10kb) 
contacts with regulatory elements at the Neighbor of BRCA1 number 1 
(NBR1) gene, with the edge of TAD and with domain boundary (Figure 
S2A[1,2,3]).

Figure S1. Interactions of the BRCA1 promoter at the Hi-C map for chromosome 17. 
Position of the genetic variant (rs11655505) at the bi-directional BRCA1 promoter. Panel 
A. Interactions of the BRCA1 bi-directional promoter are mapped app. 160 kb from the 
border of the TADs domain in esc (http://genome.ucsc.edu/). Panel B. Polymorphic variant 
(rs11655505) resides at the bi-directional BRCA1/NBR2 promoter and falls into region of 
homology to the NBR1 regulatory elements. Position of SNP variant is referred to Ref-seq, 
DNAse hypersensitivity sites (DHS), CTCF binding sites data, (http://genome.ucsc.edu/).

https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html
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These long range interactions, of rs11655505 are predicted to occur 
in embryonic stem cells, progenitor cells (Figure S2A[1]), in somatic 
(Figure S2A[2]) and cancer cell lines (Figure S2A[3]. Notably, short 
range interactions (<10kb) with regulatory sequences of NBR2 are 
predicted to be most frequent for this SNP in somatic cell lines, (Figure 
S2A[2]).

In H1 embryonic stem cells long-range interacting regulatory 
elements of the BRCA1, NBR2, NBR1 genes are characterized as an 
active promoters (Figure S2B). Whereas in somatic and in cancer 
cell lines they are defined as active promoters and/or enhancers (not 
shown) (ChromHMM; NIH Roadmap Epigenomics Consortium; 
http://www.roadmapepigenomics.org/). Their evolutionary profiles 
show the presence of subregions with over 98% of homology resulted 
from segmental duplication. Moreover the BRCA1, NBR1 genes and 
lncRNA of NBR2 are significantly expressed in H1 embryonic stem 
cells (RNA-Seq data Roadmap Epigenomics Consortium; http://www.
roadmapepigenomics.org/) (Figure S2[B]). 

As the whole, the publicly available data allow to speculate, that the 
BRCA1, NBR2 and NBR1 promoters may cluster together and have 

Figure S2
Potential cis-regulatory elements for SNP rs11655505 (C/T), and their chromatin states defined by virtual-4C and chromHMM analysis, respectively. 
Panel A
Linear plots of rs11655505 quantified interactions obtained by 4-C virtual analysis ( HYPERLINK "http://www.3dgenome.org/" http://www.3dgenome.org), which simulates Hi-C data, 
supplements it with DHS linkage and CHIP-Seq data, aligned with depicted TAD and the boundary (proximal to BRCA1 locus).
A[1]
In embrional stem cells and progenitor cells (including H1-ESC, H1-MSC, H1-NPC), rs11655505 demonstrates potential to contact the NBR1 gene regulatory element as well as the TADs 
edge and TADs boundary. The interacting potential of rs11655505 was visualized by Hi-C browser with resolution of 40 kb. 
A[2]
In somatic cell lines (including HMEC, HUVEC, NHEK, IMR90, GM12878), rs11655505 shows the highest potential for short-range interactions (<10kb) (within the NBR2 sequences), 
defined by the software with resolution of 5 kb.
A[3]
In cancer cell lines (including, PANCI, LNCaP, Caki2), patterns of potential long-range interacting elements for rs11655505, (predicted by the software with resolution of 40 kb), are similar 
to these shown in esc and psc.
Panel B
In esc and psc, potential long-range interacting elements at the BRCA1, NBR2 and NBR1 genes are characterized as the active promoters, by chromHMM. 
In these cells, the transcripts of BRCA1, NBR2 and NBR1 are detected by RNA-seq (NIH Roadmap Epigenomics Consortium; http://www.roadmapepigenomics.org/).

correlated transcription level (which might be referred as a putative 
so called “matrix of expression regulation” in embryonic stem cells,  
(Figure 3A). Potential interactions between promoters are of special 
interests because their clustering might multiply the risk of the single 
genetic variant (SNPs). 

Furthermore, the potential contacts of the BRCA1 promoter with 
TADs edge and/or boundary domain might enable transmission cell-
autonomous signals through the inter-domain and inter-chromosomal 
contacts (Figure 3[A]). One may speculate that these signals could be 
related to sexual identity and/or parental of origin effects. Notably, 
sexual identity of adult stem cells with XX karyotypes has recently 
been reported to have a novel significant role in controlling organ size, 
plasticity and tumor susceptibility (in Drosophila intestine) [114]. The 
potential interactions might also connect the BRCA1 promoter and its 
transcriptional machinery, (bearing autoregulatory BRCA1 protein) 
with ATM kinase (if it is accumulated at the boundary) and modify the 
risk of BRCA1 mutations. 

The establishment of long-range genomic contacts (mediated 
by numerous nuclear factors) is never a one-sided effect and it may 
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influence status of TAD’s edge and its border domain. In that case the 
putative BRCA1 promoter regulatory circuit, (displayed by rs11655505) 
might have an impact on chromatin status and expression rate of the 
BRCA1 promoter, many other genes in cis- and in trans- and contribute 
to the potential epigenetic memory of the region. 

In contrast to H1 embryonal stem cells, in somatic and cancer cell 
lines, the putative long-range interactions may be driven by the BRCA1, 
NBR2, NBR1 active promoters and/or enhancer regulatory elements 
(Figure 3B[2], 3C). However, based on virtual 4-C analysis, one may 
speculate that the vast majority of cells in somatic cell lines does not 
establish long-range contacts between the BRCA1/NBR2, NBR1 
regulatory elements and TADs boundary (Figure 3B[1]).

Conclusions
In each cell BRCA1 mediates molecular processes, which are 

critical for genome stability. In mammary gland BRCA1 expression 
is required for differentiation of breast stem cells and its disturbance 
may be implicated in aetiology of basal-like breast cancer. Long-
range contacts of the bidirectional BRCA1 promoter with the NBR1 
regulatory elements, TADs edge and TADs boundary are of interest 
because they might moderate the BRCA1 promoter communication 
along chromosome as well as between chromosome and increase 
BRCA1 expression plasticity in response to genotoxic stress. Once 
established they could be implicated in maintenance of pluripotency 
and contribute to potential epigenetic memory of region. They might 
also multiply the risk of the genetic variants at the BRCA1 promoter 
due to clustering of promoters (associated with establishment of 
putative so called “matrix of expression regulation”) or to modify the 
risk of mutations of the BRCA1 protein. Comparative, high resolution 
mapping and analysis of long-range contacts of the BRCA1 promoter in 
stem, progenitors, primary somatic and cancer cells, as well as in breast 
cancer patients, when it becomes attainable, will shed more light on 
their potential contribution to the risk of breast cancer. 
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