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Abstract
Vascular dementia (VaD) is the first usual cases of dementia after Alzheimer's disease, causing approximately 15% of instances. Yet, unlike Alzheimer's disease, there 
are no treatments to diminish the inflammatory process correlated to vascular dementia.

Palmitoylethanolamide (PEA) was discovered more than five decenniums ago and has been proved to counteract peripheral inflammation and mast-cell degranulation, 
as good as to exert neuroprotective and antinociceptive effects in rats and mice experimental model.

Luteolin (Lut) is an important flavone that has advantageous neuroprotective impacts both in vitro and in vivo. 

This mini-review gives a little outline of current information of PEA and Luteolin impact on various experimental model and the novel possible PEA-Lut use for 
the treatment of VaD.

Background
Vascular dementia (VaD) is a dynamic disorder that influences 

psychological capacities that were caused by lessened blood stream to 
the cerebrum [1]. VaD patients may suffer both distinctive subjective 
impedance, for example, discouragement and tension and additionally 
the loss of executive capacities [1]. Until today, no other medication, 
excluding cholinesterase inhibitors and memantine, has demonstrated 
a particular advantage in the treatment of VaD, anyway they are 
dubious clinical criticalness; likewise Cerebrolysin has indicated 
advantageous impacts on VaD patients, notwithstanding, an ongoing 
meta-examination presumed that there is as yet lacking confirmation to 
prescribe it as a normal treatment for VaD [2,3]. Therefore is required 
to test constantly new particles, in order to find a treatment that is able 
to stop the progression of this pathology. 

Neuroinflammation and oxidative stress (OS) has been widely 
correlated to be involved in the pathogenesis of both Alzheimer's 
disease (AD) and VaD. 

Experimental evidence suggests that after stroke, the microglia 
acquires a M2 phenotype, which step by step changes into a pro-
inflammatory M1 phenotype in the peri-infarct area [4]. The pathologic 
mechanism, for example, oxidative/nitrosative stress and apoptosis can 
stimulate the release of a proinflammatory mediators by receptive glial 
cells (microglia and astrocytes), and this impact can be exacerbated by 
an enlargement in BBB permeability, in this manner empowering the 
penetration of proinflammatory factors, for example, interleukins (IL-
1, IL-6) and TNF-α and prompt neurodegeneration and cell passing in 
various cerebral locales, including those associated with psychological 
capacities, for example, the hippocampus [1,5-7].

Developing confirmation exhibited that OS isn't just connected to 
VaD, yet additionally to all its hazard factors, for example, diabetes, 
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hypercholesterolemia and hyperhomocysteinemia [8-10]. The 
importance of OS in such a significant number of neurodegenerative 
issue the brain is highly susceptible to reactive oxygen species (ROS), 
since it is wealthy in unsaturated fats, which are sensible to peroxidation, 
moreover it has not a powerful antioxidant activity, and considering 
that it expends a ton of oxygen it is presented to a vital free-radicals 
amassing [11,12].

Several researches have been directed with a specific end goal to 
explore whether antioxidant and neuroprotective exerts a role in the 
prevention and treatment of VaD. In fact, in the last year, more than 
fifteen author all over the world, have focused their attention on the link 
between vascular dementia and neuroinflammation/oxidative stress 
relationship (Table 1).

One of the most widely studied families of molecules in recent years 
in the field of neuroinflammation is the family of ALIAmides.

ALIAmides stands for Autacoid Local Injury Antagonist amides 
(ALIAmides) and rapresent a group of endogenous bioactive acyl 
ethanolamides that include the renowned palmitoyl ethanolamide 
(PEA), stearoyl ethanolamide (SEA), and oleoyl ethanolamide (OEA) 
and that are involved in several biologic processes such as nociception, 
lipid metabolism and inflammations [13]. Several mechanisms describe 
the anti-inflammatory, anti-hyperalgesic and neuroprotective  effects of 
PEA. In particular, PEA down-regulates mast cell activation and prevent 
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lipid peroxidation, protein oxidation and nuclear and mitochondrial 
DNA damage, resulting in brain damage. PEA possess a very 
important capacity to counteract inflammation but intriguingly, has 
no antioxidant property per se, however its co-ultramicronization with 
luteolin is more efficacious than both molecule alone. This could be 
represents a complementary therapeutic treatment to manage VaD-
associated neuroinflammation. 
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their degranulation, modulates the activation of nuclear factor kB (NF-
kB) and the synthesis of pro-inflammatory enzymes and promotes the 
activation of a cell surface cannabinoid CB2-like receptor, or a nuclear 
receptor of the peroxisome proliferator-activated receptors (PPARs) 
family [14]. However, the PEA does not have direct antioxidant action 
to prevent oxidative stress and counteract injury to proteins and DNA.

For this reason during the years, PEA was associated with different 
antioxidant molecules such as a (trans)resveratrol glucoside(s), 
polydatin  [15-18] and (trans)polydatin [19-23] as well as a flavonoid 
luteolin [24-38].

Luteolin (Lut), like PEA, exerts a variety of pharmacological 
activities and anti-oxidant properties releated with its great ability to 
scavenge oxygen and nitrogen species. Luteolin has been appeared 
to constrain cytokine expression and modulates NF-kB and TLR4 
signalling at micromolar concentrations in immune cells, including 
mast cells [39-41]. Moreover, luteolin has been shown to attenuate 
microglial activation and mediate BDNF-like behavior both in-vitro 
and in-vivo [42,43]. Until today, luteolin has been shown a protective 
effect on several experimental model such as epilepsy [44-48], autism 
spectrum disorders [26,49-60], AD [61-65] and Parkinson Disease 
[63,66-68].

Until now, the only work that has analyzed the antioxidant, 
neuroprotective and anti-inflammatory of the PEA and luteolin in an 
experimental model of vascular dementia was made by Siracusa et 
colleagues [25]. 

In this work co-ultraPEALut, a compound based on the association 
of PEA an Luteolin in a ratio of 10:1, was able to improving the behavior 
and histopathological features in mice after VaD-induction ameliorating 
cognitive and social function VaD-reduced, modulating the NF-kB 
and apoptotic pathway, decreasing iNOS and COX-2 expression VaD-
induced and increasing BDNF and NT-3 expression. 

Conclusion
Growing evidence has indicated that oxidative stress and 

neuroinflammation plays a key role in the progression of VaD. Disparity 
between antioxidant enzyme activities and ROS generation will cause 
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