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Introduction
Oral squamous cell carcinoma

Head and neck squamous cell carcinoma (HNSCC) is the 6th 
most prevalent cancer worldwide, with more than half a million new 
cases reported annually [1,2]. Anatomical regions of SCC include the 
sinonasal and oral cavity, oropharynx, larynx, ear canal and trachea, 
with oral SCC (OSCC) being the most common malignancy of the head 
and neck region [3]. Patients diagnosed with OSCC have a particularly 
low five-year survival rate due to the compounding consequences of 
late detection [4,5]. Most OSCC patients usually present with advanced 
stage disease, and treatment is met with high levels of recurrence and 
metastasis [6,7]. In addition, OSCC patients continue to be at high risk 
of developing a second primary malignancy after their initial diagnosis 
[8,9]. The major risk factors for OSCC are tobacco use, alcohol abuse, 
betel nut chewing, genetic predisposition (eg. Fanconi anemia) and in 
the oropharyngeal anatomical subsite, infection with high-risk human 
papilloma viruses (HPV) [3,10]. Based on these differing aetiologies, 
it is hardly surprising at a molecular level that OSCC is a highly 
heterogeneous disease [11-14].

HPV-related oropharyngeal SCC are still diagnosed at lesser 
rates than HPV-negative OSCC and the prevalence of high-risk HPV 
positivity in OSCC varies widely between developing countries [1]. 
In the HPV-negative subsets, chronic exposures to carcinogens and 
extensive consumption of alcohol have been largely associated with 
the induction of neoplasms [1,15-17]. Oral leukoplakia and oral lichen 
planus are among the most frequent oral potentially malignant lesions 
and patients with those lesions are more susceptible to developing 
OSCC [18-21]. Comparably, immunosuppressed transplanted 
individuals are also prone to OSCC [22] and a high occurrence of 
oral cancer has been noted following post haematopoietic stem cell 
transplantation and liver transplant patients [23,24]. Despite those 
correlative studies, significant insights into the molecular mechanisms 
that initiate OSCC are still lacking. Therefore, defining the key effectors 
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Abstract
Over the last thirty years, improvements in survival rates of oral cancer patients have remained modest, hampered by the late diagnosis of the disease, a lack of 
understanding of the underlying biology of oral cancer, and a lack of identified actionable targets. While the apical-basal polarity has been widely investigated in 
normal and pathological contexts, its involvement in oral homeostasis is still not well understood. Here, we discuss the current documented role of PAR-3 complex-
dependent apical-basal polarity regulation in oral cancer. We explore molecular switches that link polarity dysfunction to oral cancer initiation and highlight relevant 
models that would promote our understanding of disease development for therapeutic interventions.

in oral homeostasis is an urgent clinical need with potentials to open-
up novel avenues for early detection of precancerous lesions, providing 
a scaffold for the development of survival improving preventative and 
therapeutic interventions against OSCC.

Oral homeostasis

The oral mucosa of the tongue consists of a connective tissue known 
as the lamina propria covered by squamous stratified cells forming the 
oral epithelium (OE). Stem and progenitor cells in the basal layer of 
the OE divide to repair any transient damage and to maintain rapid 
self-renewal of the tissue [25,26]. Upon commitment to differentiation, 
similar to skin keratinocytes, the proliferating cells polarize and migrate 
upward to form consecutively, the spinous, granular, clear and cornified 
layers [27,28]. The last step of this differentiation program establishes 
the cornified layer that provides a functional protective outer barrier in 
the dorsal tongue. In addition, terminally differentiated cells produce 
anti-microbial peptides that contribute to the protective response 
against any epithelial damage [29,30].

Mutations in genes that regulate squamous differentiation were 
observed with high rates in oral cancers [12,13,31]. This suggests 
that oral homeostasis is tightly controlled by regulatory mechanisms 
of differentiation implicating dysregulation of this process as a driver 
of OSCC. It is well recognized that regulation of polarized protein 
segregation governs cell division, migration and differentiation, while 
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disruption in these processes results in barrier function impairment, 
epithelial hyperproliferation and in some cases, SCC [32-35]. Important 
modulators of those mechanisms are apical-basal polarity complexes 
that have been shown to modulate keratinocyte differentiation and 
epithelial barrier function [36,37]. Therefore, the regulation of polarity 
proteins is essential for the normal function of stratified epithelia and 
for the maintenance of their homeostasis.

Apical-basal polarity in oral cancer

Different polarity complexes mark front, rear, apical, basal and 
adjacent sides of the cell allowing basal cells to self-replenish and 
remain in the basal layer while progenitor cells migrate towards the 
surface of the stratified epithelium. The Par-3/Par-6/aPKC/Cdc42 is an 
important polarity complex that contributes to those highly regulated 
processes by initiating the conversion of adherens junctions (AJ) to 
form “belt-like” junctions in preparation of epithelial cell polarization 
[38]. Gӧdde et al., has detailed the role of the Par-3 complex in polarity 
and cancer in multiple murine models showing that loss of PAR- 3 
alone is not sufficient to induce malignant transformation, but rather 
requires additional oncogenic events [39]. In mammary tissues, ductal 
hyperplasia of Par-3- deficient cells did not progress to malignancy 
[40]. However, in various breast cancer mouse models, it was only 
following the induction of oncogenic hits that the tissues transformed 
to cancer, albeit at a faster progression rate in the absence of PAR-3 
[41,42]. Furthermore, with regards to squamous epithelia, the polarity 
protein PAR-3 was shown to control epidermal homeostasis through 
regulation of barrier function, keratinocyte differentiation, and stem 
cell maintenance [43].

Nevertheless, and despite its established function in the skin, little 
is known about the role of core components of the Par-3 complex in 
squamous tissue homeostasis. A genome-wide screen of 684 human 
cancer cell lines revealed homologous PAR-3 exon microdeletions 
occurring predominantly in SCC, including OSCC. In addition, the 
loss of tight junctions in lung SCC is observed at the expense of PAR-3 
deletion or suppression while the upregulation of yes- associated protein 
(YAP1) and aPKC were noted in OSCC and HNSCC, respectively 
[44,45].

Because the Par-3 complex is involved in the sequential 
stratification of the oral epithelium [46,47] and since OSCC are 

characterized by disrupted differentiation and stratification, it is 
reasonably predictable that oral cells may have lost their ability to 
recognize apical-basal polarity at the initial stage of transformation. 
Therefore, through analyses of multiple PAR-3 partners and regulators, 
mechanistic insights into the function of Par-3 polarity complex could 
be seen shedding light on OSCC initiation.

FERM domain containing 4A (Frmd4a)

The FERM family of ezrin, radixin and moesin has been identified 
as integral for communication and transportation between the 
cytoskeleton and the plasma membrane, and co-localize with the Par-
3/Par-6/aPKC/Cdc42 complex [48]. The FERM proteins facilitate the 
linking of transmembrane proteins such as CD44, CD43, I-CAM2 and 
I-CAM3 within the intercellular space [49-53]. Interestingly, of the eight 
currently identified FERM proteins [54] only FRMD4a has been shown 
to play a role in the regulation of apical-basal polarity [38], oncogenesis 
[55,56] and interaction with tumor promoting factors in OSCC [57]. 
FRMD4a is known to regulate the apical-basal polarity by linking the 
Par-3 complex with the guanine nucleotide exchange factor of Arf6, 
cytohesin-1, which is necessary for Arf6 activation consequently 
maintaining epithelial polarization (Figure 1) [38]. While FRMD4a 
is mainly expressed in basal cells of the oral stratified squamous 
epithelium, its expression is found reduced with differentiation with no 
signal detected in differentiated and terminally differentiated layers of 
the normal tissue [38]. On the other hand, FRMD4a is recognized as a 
stem cell marker in normal oral cells, and knockdown of Frmd4a either 
in vitro or in xenografts correlates with E-cadherin downregulation 
and subsequent reduction in cell proliferation. Furthermore, in situ 
hybridization of Frmd4a in OSCC sections demonstrated increased 
expression that is no more limited to basal cells [54] and prominent 
mRNA and protein expression of this stem cell factor were found in all 
OSCC lines tested [58,59]. Goldie et al., also noted a direct correlation 
between increased FRMD4a expression and the risk of OSCC 
recurrence in two retrospective data analyses [54]. Moreover, Zheng et 
al., complemented these findings and reported that there is a significant 
correlation between the overexpression of FRMD4a and the rate of 
OSCC metastasis to lymph nodes [55]. More interestingly, increased 
nuclear localization of YAP was associated with nuclear FRMD4a 
expression in SCC cells suggesting that FRMD4a may influence the 
Hippo pathway, dysregulating growth control and oral homeostasis 

Figure 1. Schematic representation of FRMD4a interaction with the Par-3 polarity complex in the cytoplasm of normal cells and its association with YAP in the nucleus of transformed cells
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[54,59]. In earlier studies, FRMD4a was also shown to bind to YEATS 
domain containing 4 (aka YEATS4, Gas41), which is upregulated in 
tumor cells and predominantly expressed in the nucleoli [56]. Therefore, 
in a normal situation, cytoplasmic FRMD4a contributes through 
the Par-3 complex to apical-basal polarity, while the dissociation of 
FRMD4a and its relocalisation to the nucleus seems essential to initiate 
dysplastic transformations and to drive tumorigenesis (Figure 1). These 
data underline a merit to further explore the biological function of 
FRMD4a whereby future experiments could pioneer novel therapeutic 
approaches by either preventin1g FRMD4a nuclear translocation or by 
targeting its downstream oncogenic function in oral cancer.

Conclusion
Our understanding of how the Par-3 apical-basal polarity complex 

influences oral differentiation, polarization, stratification and cancer 
development, whether through core components or binding partners, 
remains currently limited due to the lack of relevant laboratory and 
animal models. Future studies should be conducted to determine how 
FRMD4a interacts with PAR-3 in normal tissues and how FRMD4a 
dissociation and mis-localization to the nucleus could engage the Hippo-
YAP signaling activation in the initiation of epithelial transformation, 
particularly in OSCC.
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