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Abstract
Atherosclerosis is the underlying pathology of the majority of cardiovascular events in the Western world. It is well established that both the cellular and extracellular 
components of the arterial wall undergo morphological changes during plaque development. The extracellular matrix (ECM), a network of various macromolecules 
such as collagen, proteoglycans, elastin and fibrin, not only provides structural support for the vessel wall, but plays also a key role for biological signaling and cell 
interactions. Current standard clinical imaging modalities are limited to detecting anatomical changes in atherosclerosis. In recent years, molecular magnetic resonance 
imaging (MRI) has emerged as a promising in vivo alternative. Molecular MRI enables the visualization of biological changes in the formation and progression of 
plaques and the development of novel ECM-targeting MRI contrast agents has been on the rise. This review presents a summary of the recent advancements in the 
field of molecular probes for ECM imaging in the context of atherosclerosis.
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Introduction
Currently, cardiovascular diseases are accountable for almost 

one-third of sudden and premature death cases worldwide [1]. 
Atherosclerosis is responsible for the majority of high mortality 
cardiovascular and cerebrovascular clinical manifestations such as 
stroke and acute myocardial infarction. It is defined by the formation 
of plaque in arterial vessel walls as a result of multifactorial alterations 
of both the cellular and extracellular components of the artery. The 
extracellular matrix (ECM) is an ubiquitary element of both healthy 
and diseased tissues. This is equally valid for atherosclerotic plaques, 
whose mass is to a considerable extent formed by ECM components 
such as collagen, elastin, fibrin, glycosaminoglycans (GAGs) and 
proteoglycans. The progression of atherosclerosis is regulated by the 
fine balance of disintegration and synthesis of these biomolecules. 

The current clinical imaging techniques, namely coronary 
angiography and contrast-enhanced computer tomography concentrate 

on relative plaque size to calculate the degree of luminal stenosis. Even 
though these imaging modalities are the current standard diagnostic 
reference, they only serve as an indirect marker and underestimate 
plaque burden, considering that compensatory vessel enlargement can 
sustain a plaque mass increase with no luminal narrowing [2]. 

Magnetic resonance imaging (MRI) has emerged as a radiation-
free technique to directly and effectively image plaque depositions. 
Molecular MRI expands the information about plaque anatomy by 
additional evaluation of plaque morphology and physiology, both 
crucial for profiling cardiovascular event risk [3]. 

A growing body of literature has evaluated the development of 
novel cardiovascular molecular probes (Figure 1). The goal of this 
literature review is to discuss the recent advances in the development 
of ECM-targeting contrast agents and their application in the context 
of atherosclerosis.
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Collagen-targeting probes

The collagen protein family consists of around 20 genetically 
different subtypes [4], with subtypes I, III, IV, V, VI and VIII involved 
in the composition of arterial vessels [5]. While subtype I is the 
predominant form in healthy tissues [6], types I, III, IV and V are highly 
expressed in ECM of atherosclerotic plaques, with type IV found in the 
fibrous caps of plaques and type V especially common in advanced 
atheromas [7]. These characteristics make collagen an ideal surrogate 
marker for ECM remodeling.

The overall amount and length of collagen proteins in plaques is 
critical for risk assessment. Following atherosclerosis initiation, the 
expression of collagen increases greatly [8,9] and can contribute to up 
to 60% of proteins in the ECM of atherosclerotic plaques [10], being 
responsible for maintaining the plaques integrity and reducing the 
danger of rupture. Activated matrix metalloproteinases (MMP1, MMP 
8, MMP13) [11,12], secreted by macrophages and smooth muscle cells 
(SMC), fragment long chain collagen chains into short peptides [13]. 
This process is especially prominent in the fibrous cap region of the 
plaque so that plaques characterized by highly fragmented collagen 
fibers and decreased collagen density are prone to rupture [14,15]. 

EP-3533 - a type I collagen-targeting probe was presented by 
Caravan et al. in 2007 [16]. This gadolinium-based molecular agent 
has so far successfully been tested for the specific detection of early-
stage fibrosis across various small animal disease models, including 
myocardial infarction [16], liver fibrosis [17,18]and pulmonary fibrosis 
[19]. By conjugating EP-3533 with high density lipoprotein (HDL) 
nanoparticles, it was not only possible to detect atherosclerotic plaques, 
but also to measure their regression in a mouse plaque regression 
model [20]. 

Another approach was recently introduced by Wei et al. [21]. 
In this study, gadolinium labeled nanoparticles containing platelet 

membrane around a synthetic nanoparticle core were used in a murine 
Apo-E -/- model. By mimicking the role of platelets in the pathology 
of atherosclerosis, these particles interact with collagen, foam cells and 
activated endothelium at the plaque site. In vitro assay confirmed that 
this novel agent binds to type IV collagen specifically. 

Elastin-targeting probes

One of the major proteins found in the ECM, making up to half 
of an artery’s dry weight [22] and responsible for the tensile strength 
and integrity of the physiologically intact arterial wall is elastin [23]. 
Tropoelastin, elastin’s soluble precursor, is mainly expressed by SMC 
[24] and subsequently cross-linked and merged into circular elastin 
lamellae in the vessel wall. In the development of atherosclerosis 
increased elastogenesis, triggered by various biological signals [25] 
and conversely increased elastolysis, caused by MMPs [26], leading to 
fragmentation and degradation, result in disrupted composition and 
appearance of the ECM in plaques. 

The increased relative amount of elastin in the plaque matrix 
represents an excellent molecular target. Recent research efforts led to 
the development of an elastin-targeting probe. So far, the specificity of 
this novel contrast agent to elastin was successfully tested both ex vivo 
and in vivo in small and large animal models [27-30]. 

The latest advancement in this field is the development of a 
simultaneous dual-probe molecular MRI protocol in a single imaging 
session, combining the assessment of plaque burden with inflammatory 
activity in an atherosclerotic Apo-E -/- mouse model [31]. While 
the accumulation of the iron-oxide-based contrast agent was most 
prominent in the early stage of plaque development following two 
months of high-fat diet (HFD), the elastin-specific probe showed the 
highest accumulation in advanced plaques after four months of HFD. 
Neither of both probes in this study affected the visualization of the 
other one. Combining different biomarkers related to atherosclerosis 
could enable better risk assessment of patients in the future. 

Another approach to target dysfunctional elastogenesis and 
elastolysis was developed by Phinikaridou et al. [32]. By targeting 

Figure 1. Classification of the novel ECM targeting probes discussed in this review categorized in following groups: (1) collagen, (2) elastin, (3) fibrin and (4) GAG
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tropoelastin with a gadolinium-labeled tropoelastin-specific 
magnetic resonance contrast agent in two animal models, namely 
Apo-E -/- mice and New Zealand white rabbits, a novel biomarker 
for plaque progression and instability was obtained. After delayed-
enhancement MRI (DE-MRI) of the Apo-E -/- control group, vessel 
wall enhancement was visible with gadolinium-ESMA (Gd-ESMA), 
while no enhancement was shown after Gd-TESMA since tropoelastin 
is not found in healthy arteries. In two mice in the experimental group, 
vessel wall enhancement after DE-MRI was visible after administration 
of both Gd-ESMA and Gd-TESMA, whereas Gd-ESMA contributed 
to a stronger enhancement than Gd-TESMA. Since the atherosclerotic 
vessel wall contains both cross-linked elastin and tropoelastin and Gd-
ESMA binds to both, Gd-ESMA contributed to a stronger enhancement 
than Gd-TESMA.

Fibrin-targeting probes

Imaging fibrin in the context of atheromas presents as more 
challenging than imaging elastin and collagen since it is less abundant 
than the aforementioned. However, fibrin is not a natural component of 
the arterial wall, establishing fibrin-targeting probes as a promising and 
highly specific surrogate marker. Not only is fibrin a key player in the 
coagulation cascade after plaque rupture, but it is also highly relevant 
during plaque progression [33]. The increased endothelial permeability 
leads to fibrin influx [34], adding to the absolute plaque ECM mass [35] 
and serving as an adhesion point for proinflammatory cells, platelets 
and SMC [36,37]. It has been shown that the relative amount of fibrin 
in advanced plaques increases and is especially high in the necrotic core 
[33]. 

Botnar et al. developed the fibrin-targeted gadolinium-based 
peptide probe EP-1873 with high relaxivity and stability [38], called EP-
1873 that was subsequently tested in an atherosclerotic New Zealand 
white rabbit model. Plaque rupture was induced, and the rupture site 
was visible in MRI with a 100% overlap to the ex vivo histological 
findings [38]. EP-1873s stability and binding specificity to fibrin was 
further optimized, leading to the development of EP-2104R [39]. So 
far, this probe has been applied in large and small animal models of 
arterial, venous, coronary and atrial thrombosis as well as pulmonary 
and cerebral embolism [40-43]. More important, it was also possible 
to differentiate between thrombi that tend to thrombolysis and stable 
thrombi based on their fibrin content [44]. Further experimental 
investigations need to be performed to establish whether EP-2104R 
could also be useful as a pre-rupture molecular agent in the earlier 
stages of plaque development. 

EP-1242 is another fibrin-targeted small peptide derivative that was 
successfully tested in an acute carotid thrombosis guinea pig model 
[45]. After rapidly binding to the fibrin-rich surface area of the clot, the 
contrast agent disseminates in the thrombus within 30 minutes after 
intravenous injection. The invasive nature of this model restrict it to the 
detection of acute non-occlusive thrombi only, excluding the detection 
of non-occlusive and subacute thrombi.

Glycosaminoglycan-targeting probes 

GAGs are fundamental building blocks for proteoglycans, playing 
an important role in the development and progression of atheroma by 
interactions with LDL, collagen, cytokines and platelets [46,47]. Similar 
to collagen fibers, the degradation of GAG chains contributes to plaque 
instability [48,49]. The most common proteoglycans found in healthy 
arterial walls are biglycan, syndecan, perlecan, decorin and versican, 
with the last-mentioned also highly expressed in human atherosclerotic 

lesions. However, in murine models, biglycan and perlecan, but not 
versican accumulate in atherosclerotic plaques [50].

Several in vitro and in vivo studies investigated the interactions 
of very small superparamagnetic iron oxide particles (VSOP) with 
atherosclerosis-associated cell types and extracellular structures [51-
53]. The results suggested that the interaction of pathologically increased 
GAGs influences both the uptake of VSOP into atherosclerotic lesions 
and the accumulation within the diseased tissue, thereby enabling 
non-invasive MRI assessment of plaque inflammation and increased 
endothelial permeability [52,53].

Conclusion and perspectives
In conclusion, this minireview represents an overview of the 

current developments in ECM-targeting MRI probes. Molecular MR 
imaging is an emerging and promising non-invasive modality for the 
characterization of pathobiological mechanisms in the progression of 
atherosclerosis. ECM, being a substantial and ubiquitous component of 
both healthy and diseased tissues plays a key role as a molecular target. 
Translational research allows the application and in vivo visualization of 
these contrast agents, verifying their specificity and efficacy in animal 
models and bringing the development of novel molecular MR imaging 
probes one step closer to a clinical setting. 
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