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Introduction
Diabetes mellitus is a metabolic disorder, and its prevalence is 

increasing worldwide. It is a major cause of cardiovascular disease, 
stroke, chronic kidney disease, neuropathy, blindness, and cancer, 
which are closely associated with morbidity and mortality in patients 
with diabetes. Diabetes has also been recognized to affect bone health 
in terms of bone strength, turnover, mineral density, and structure. 
Delayed bone healing is recognized as an additional complication 
of longstanding diabetes, which is associated with a high risk of 
delayed union, non-union, or pseudoarthrosis [1-3]. Prevention and 
improvement of the disabling bone complications in diabetes have 
attracted more attention.

 Considering the underground mechanisms of hyperglycemia, 
glycative stress and oxidative stress are known to be associated with the 
development of diabetic complications including delayed bone healing 
due to reduced osteoblast differentiation, increased osteoclast activity, 
and induction of apoptosis in chondrocytes and osteoblasts [4-7]. 
Glycative stress is an overwhelming and unfavorable glycation state that 
has been established as a pathogenic factor. Glycation is a non-enzymatic 
reaction that ultimately results in the formation of advanced glycation 
end-products (AGEs) in biological macromolecules. The characteristic 
increase in glycative stress under high glucose conditions in vivo leads 
to diabetic complications due to accumulation of AGEs from exogenous 
and endogenous sources and the production of dicarbonyls, which are 
reactive compounds and major AGE precursors. The importance of 
glycative stress is proved by the fact that hemoglobin A1c (HbA1c), 
a compound with an Amadori rearrangement produced during early 
glycation reaction, is closely correlated with the development of diabetic 
complications, and is clinically used as a surrogate marker of an average 

blood glucose level over approximately one month [8-10]. AGEs and 
dicarbonyls are recognized as pro-inflammatory and pro-oxidant 
mediators that lead to various biological responses, predominantly by 
activating the receptor for AGEs.

We have previously reported that glycative stress and accumulation 
of AGEs elicit delayed bone healing in mice [11]. The most reactive 
dicarbonyl, methylglyoxal (MGO), inhibits osteoblast differentiation 
[11]. Thus, the production of MGO should be inhibited to elucidate 
its beneficial role against bone problems in diabetes. Currently, 
pyridoxamine (PM) is receiving considerable attention as an AGE 
inhibitor and an investigational drug for the treatment of diabetic 
complications. PM is one of the three natural forms of vitamin 
B6, together with pyridoxal (PL) and pyridoxine (PN), and has 
been identified as an anti-glycating agent that act via trapping of 
α-dicarbonyl compounds [12-21]. Previous studies have shown that 
PM inhibits the formation of AGEs and retards the development of 
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diabetic nephropathy and retinopathy in animal models of diabetes 
[22]. In the present study, we aimed to examine the effectiveness of PM 
treatment in improving bone repair ability in vivo using hyperglycemic 
diabetic mice, along with restoration of MGO-induced derangement of 
osteoblast differentiation in vitro.

Materials and methods
Cell culture

Mouse MC3T3 cells (Riken Cell Bank, Tsukuba, Japan) were 
maintained in α- minimum essential medium (5.5 mmol/L glucose; 
Wako Pure Chemical Industries, Osaka, Japan), supplemented with 10% 
fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin 
in a 5% CO2 atmosphere at 37 °C. To induce osteoblastic differentiation 
in MC3T3 cells, 10 mM β-glycerophosphate, 0.1 μM dexamethasone, 
and 50 μM ascorbic acid were added to the cell culture medium. For 
the assays, 0.5 – 2.0 mM MGO (Sigma Aldrich) and 0.3 – 3.0 mM 
pyridoxamine-dihydrochloride-monohydrate (4-aminomethyl-3-
hydroxy-2-methyl-5-oxymethylpyridihydrochloride, Tokyo chemical 
industry, Japan) was added to the differentiation medium, and the 
medium was changed every other day.

Alkaline phosphatase (ALP) activity assay

ALP activity in MC3T3 cells was determined 7 days after the 
induction of osteoblastic differentiation, using a TRACP & ALP Assay 
kit (Takara Bio, Inc., Otsu, Japan), according to the manufacturer's 
protocol.

Experimental animals and induction of diabetes

Male C57BL/6J mice (weight, approximately 21 g) at 6 weeks of 
age were purchased from Charles River Japan, Inc. (Yokohama, Japan). 
They were acclimatized for 1 week prior to the start of the experiment. 
For diabetes induction, streptozotocin (STZ; 50 mg/kg body weight) 
was intraperitoneally injected daily for 5 days according to the Animal 
Models of Diabetic Complications Consortium (AMDCC) protocols. 
In contrast, sodium citrate buffer was injected into mice of non-diabetic 
control group. PM was administered to the animals in drinking water 
(1.0 g/L). Mice were divided into four experimental groups: non-diabetic 
control (CNT) groups with or without PM treatment [CNT+PM (n = 
10) or CNT (n = 10), respectively] and diabetic groups with or without 
PM treatment [diabetic mice (DM)+PM (n = 10) or DM (n = 10), 
respectively]. After 3 weeks of STZ or sodium citrate buffer injection, 
non-fasting blood glucose levels were monitored with a glucometer 
(Glutest Ace, Sanwa Kagaku, Japan) using whole blood obtained 
from the tail vein. Diabetes was identified by a blood glucose level of 
> 300 mg/dL. HbA1c, an early glycation marker, was measured in the 
tail vein blood using DCA Vantage analyzer (Siemens Healthineers, 
Erlangen, Germany). Mice were maintained under standard cage 
conditions (24 °C; 12/12 h light/dark cycle) with sawdust bedding, 
and access to food (mouse standard chow diet) and water ad libitum. 
All animal experiments were approved by the Committee on Animal 
Experimentation of Kanazawa University and performed in accordance 
with the Fundamental Guidelines for Proper Conduct of Animal 
Experiment and Related Activities in Academic Research Institutions 
under the jurisdiction of the Ministry of Education, Culture, Sports, 
Science, and Technology of Japan.

Induction of drill hole injury in the femur

A straight and longitudinal skin incision (5.0 mm) was made in 
the mouse distal femur under anesthesia using combination anesthetic 

containing midazolam (4.0 mg/kg), medetomidine (0.3 mg/kg), and 
butorphanol (5.0 mg/kg). The periosteal membrane was then stripped 
away, followed by splitting of medial great muscle to expose the femur 
bone surface. A drill hole injury was introduced by inserting a drill bit 
(0.9 mm in diameter) at the medial portion of the diaphysis of the left 
femur, 5 mm above the knee joint, as described previously [11]. The 
hole was drilled through the collateral cortical bone and bone marrow. 
During surgery, the body temperature was maintained at 37 °C using a 
heating pad.

Computed tomography (CT) scanning

Whole femur bones were scanned under anesthetic condition using 
an X-ray CT system (Latheta LCT 200; Hitachi Aloka Medical, Tokyo, 
Japan) at 0, 3, 7, 10, and 14 days after the drill hole injury. The healing 
process in the bone defect lesions was evaluated using a suitable analysis 
software (AzeWin; AZE, Ltd., Tokyo, Japan). Images were processed 
in a multiplanar reconstruction, according to oblique coronal planes, 
maintaining the working axes parallel to the center line of the bone 
defect. CT values at the area of the bone defect were calculated at every 
phase, as described previously [11].

Histopathological examination

The left femur was extracted and fixed in 10% buffered formaldehyde 
solution, 7 days after the drill hole injury. After 12 h of fixation, soft 
tissues were cleaned, and specimens were decalcified in formic acid 
sodium nitrate solution as described previously. The specimens with a 
drill hole were sectioned and embedded in paraffin. Mid-sagittal serial 
sections (5 to 7 μm thick) were prepared and stained with hematoxylin 
and eosin (H&E). Histological sections were examined using light 
microscopy at a magnification of 100×. 

Statistical analysis

Data are presented as the mean ± standard error of the mean. The 
differences in the measured variables among the four groups were 
analyzed using non-repeated one-way analysis of variance (ANOVA). 
Post hoc multiple comparison using Tukey's method was performed to 
assess differences between the groups. Differences with a p value < 0.05 
were considered significant. Statistical analysis was performed using 
the SPSS software (IBM SPSS Statistics Version 22, IBM, Armonk, NY, 
USA).

Results
Effects of PM treatment on bone defect repair in STZ-induced 
diabetic mice

To examine the effectiveness of PM treatment on bone defect repair 
in diabetes, DM and CNT were used with or without PM treatment (1 
g/L), which was given to mice in the drinking water. We first evaluated 
hyperglycemic conditions related to diabetes. As a result, overt diabetic 
status was observed in STZ-induced DM compared to CNT: body 
weight (22 ± 1.4 vs. 27 ± 1.7 g), non-fasting blood glucose levels (531 ± 
94.8 vs. 132 ± 10.6 mg/dL), and HbA1c (7.9% ± 0.99% vs. 3.7% ± 0.28%) 
(p < 0.05) at 3 weeks after multiple low-dose STZ injections (50 mg/kg 
body weight, daily for 5 days) (Table 1). Polydipsia was evident in DM 
group, compared to CNT group (9.3 ± 0.86 vs. 3.3 ± 0.22 g/day; DM vs. 
CNT) (Table 1). PM treatment did not affect the diabetic status of DM 
group (body weight, 22 ± 1.4 g vs. 22 ± 1.7 g; blood glucose, 531 ± 94.8 
vs. 539 ± 63.0 mg/dL; HbA1c, 7.9% ± 0.99% vs. 7.7% ± 0.36%; water 
intake, 9.3 ± 0.86 vs. 6.6 ± 3.82 g/day; DM vs. DM+PM, respectively) 
(Table 1). In addition, PM did not change any indices of CNT group 
(Table 1). 
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ALP activity, in a dose-dependent manner (Figure 4). We performed 
in vitro cell-based assays to evaluate the effectiveness of PM treatment 
on osteoblastic differentiation and observed significant improvement in 
MGO-induced deterioration of osteoblastic differentiation in MC3T3 
cells (Figure 4).

Discussion
The present study is the first to demonstrate the effectiveness of PM 

treatment in restoration of delayed healing of bone defect in diabetic 
mice with a femur drill-hole injury (1.0 mm) model (Figures 1 and 3). 
CT and histological evaluations revealed that the ossification recovery 
rate of the bone defect lesion in DM+PM group was almost similar to 
that in CNT group (Figures 1 and 2), although PM treatment was found 
to have no significant effects on lowering blood glucose or HbA1c 
levels in STZ-induced diabetic mice (Table 1). Individual data analyses 
demonstrated that DM mice with higher HbA1c and average blood 
glucose levels showed lower CT values in the drilled bone defect portion 
at 7 days after surgery (Figure 2), compared to (DM+PM) group with 
no negative correlation between HbA1c and CT values. The dosage of 
PM (1 g/L drinking water; approximately 200 mg/kg/day) used in this 
study was the same as in our previous report, which proved it to be a 
safe dose (0.42 μM) that attained serum concentrations of PM within a 
less toxic range in vivo, and its preclinical efficacy has been proven in 
diabetic kidney disease in KK-Ay/Ta and STZ-induced diabetic rats and 
mice [17,14]. Notably, PM treatment did not accelerate the ossification 
recovery in CNT+PM group (Figures 1 and 3), suggesting that PM 

Further, we investigated bone defect repair of drill hole defects in 
the mouse femur, which was evaluated using CT scanning. CT images 
revealed delayed bone repair in the drill hole lesions in DM group 
compared to CNT and DM+PM groups (Figure 1A). Quantitative 
evaluations demonstrated that the CT values of the bone defect portion 
in DM group were significantly lower than those in CNT group, even at 
3 days after the injury (Figure 1B). We observed significantly impaired 
bone healing in DM group compared to the CNT group, during all 
observation periods (3, 7, 10, and 14 days) (Figure 1B). However, PM 
treatment significantly improved bone healing in DM group at 3, 7, 
and 10 days after the drill hole injury (Figure 1B). Moreover, a negative 
correlation between individual HbA1c and CT values at 7 days after the 
injury, was obtained for DM group (Figure 2), indicating that elevated 
level of glycated HbA1c could be associated with delayed bone healing 
and low CT values. However, PM treatment (DM+PM) group did not 
show a negative correlation (Figure 2).

Furthermore, histological findings also showed that the bone hole 
defect was not repaired in DM group, compared to other groups in 
the restoration stage at 10 days after the injury (Figure 3). PM-treated 
(DM+PM) group showed recovered bone hole filled with new bone 
tissues, as seen in the CNT and CNT+PM groups (Figure 3).

Effects of PM treatment on MGO-induced deterioration of 
osteoblastic differentiation of MC3T3 cells in vitro

In vitro cell-based assays demonstrated that exposure to MGO 
inhibited osteoblastic differentiation in MC3T3 cells, as indicated by 

Group BW (g) BG (mg/dl) HbA1c (NGSP, %) Amount of drinking water (g/day)
CNT 27 ± 1.7* 132 ± 10.6* 3.7 ± 0.28* 3.3 ± 0.22*
DM 22 ± 1.4 531 ± 94.8 7.9 ± 0.99 9.3 ± 0.86

DM+PM 22 ± 0.7 539 ± 63.0 7.7 ± 0.36 6.6 ± 3.82
CNT+PM 28 ± 1.7* 163 ± 75.5* 3.8 ± 0.24* 3.1 ± 0.41*

*p < 0.05 vs. DM or DM+PM; the data are expressed as mean ± standard error of the mean. BW, body weight; BG, blood glucose; NGSP, National Glycohemoglobin Standardization 
Program; CNT, control; DM, diabetes mellitus; PM, pyridoxamine.

Table 1. Diabetic status of mice.

Figure 1. Evaluation of bone defect repair by CT scanning. (A) CT images at 0, 3, 7, 10, and 14 days after bone injury in the left femur. (B) Quantitative evaluation of the CT imaging. 
A vertical axis indicates CT values of the bone defect lesion. CNT, non-diabetic control groups without pyridoxamine (PM) treatment; CNT+PM, non-diabetic control groups with PM 
treatment; DM, diabetic groups without PM treatment; DM+PM, diabetic groups with PM treatment; HU, hounsfield unit. Data are presented as the mean ± SEM; n = 10 per group. *, p < 
0.05; **, p < 0.01
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Figure 2. Correlation diagrams between HbA1c and CT values at 3 days after the bone injury. DM, diabetic groups without PM treatment; DM+PM, diabetic groups with PM treatment; n 
= 10 per group

Figure 3. Microscopic findings at day7 after the bone injury. CNT, non-diabetic control groups without PM treatment; CNT+PM, non-diabetic control groups with PM treatment. H&E 
stain. Magnification, ×10

Figure 4. In vitro osteoblastic differentiation of MC3T3 cells. (A and B) Alkaline phosphatase (ALP) activity assay using MC3T3 cells at 7 days after the induction of osteoblastic 
differentiation. Dif, differentiation media; MGO, methylglyoxal; PM, pyridoxamine. Data are presented as the mean ± SEM; n = 6 per group. *, p < 0.05
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could affect only diabetes- and hyperglycemia-derived metabolic 
alterations in the bone repair tissues.

 In vitro assay of MC3T3 cells revealed that the addition of MGO 
into cell culture medium decreased ALP activity, which is the most 
frequently used marker for osteoblast differentiation and functions 
(Figure 4). However, PM treatment significantly improved MG-induced 
deterioration of osteoblastic differentiation in MC3T3 cells (Figure 
4). In this assay, we used MGO at concentrations of 0.5 to 2.0 mM 
equivalent to those in our previous study [11]. The concentration of 
MGO in vivo remains controversial, and the data vary among multiple 
assay methods. The actual intracellular concentration of MGO has been 
argued in living organs and cells. In addition, the concentrations of PM 
used for in vitro cell-based experiments are still under discussion along 
with MGO doses. Pyridoxine, a form of vitamin B6, has been reported 
to cause cell death at 1 μM [23]. In contrast, pyridoxal and PM are 
known to be nontoxic. No or minimal adverse events of PM have been 
observed in previous clinical studies. 

DM can cause many complications [24]. The mechanism of 
diabetes-associated bone problems has been assumed that bone 
marrow-derived mesenchymal stem cells would not be recruited to the 
injured site in diabetic patients [25], and therefore, diabetes has been 
related to osteoblast suppression and osteoclast-promoting actions 
[24]. Our previous study demonstrated that glycation stress, including 
MGO, could impair osteoblastic differentiation and delay bone injury 
repair in diabetes [11]. In this study, PM administration rescued bone 
injury repair in mice with diabetes. Thus, we propose that inhibition of 
MGO production could be a potentially useful strategy against bone 
problems in diabetes and PM could be a powerful candidate for MGO 
detoxification.

PM, a derivative of vitamin B6, is reported to have many biological 
effects: (1) inhibition of AGE formation by trapping dicarbonyl 
intermediates, including MGO, during the glycation reaction, (2) 
scavenging of toxic carbonyl products of glucose and lipid degradation, 
and (3) scavenging of reactive oxygen species (ROS) [12]. Oral PM 
treatment is reported to have benefits related to creatinine clearance 
and level of urinary transforming growth factor-β 1 in patients with 
type 1 and type 2 diabetic nephropathy in a phase II clinical study [18]. 
In animal studies, PM attenuated glycated serum protein levels and 
intervertebral disc degeneration process in Zucker diabetic Sprague–
Dawley (ZDSD) rats [26]. A recent study demonstrated the inhibitory 
effects of short- and long-term treatment of PM on the adhesive 
function of neutrophils and platelets in the microvessels of sickle cell 
disease mice [27], suggesting a novel biological action of PM.

In conclusion, our findings suggest that PM treatment could be 
useful in reducing glycative stress and improving bone union delay 
associated with diabetes. This is the first report on the beneficial 
effects of PM in bone injury and provides a basis for the treatment 
of pseudoarthrosis and delayed bone healing/fusion in patients with 
diabetes.
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