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Abstract
Oil sand is a composite material of quartz aggregates, bitumen, water, and air void in which the bitumen exhibits a time and temperature dependent behavior under 
loading. The soil skeleton (quartz aggregates) comprises dense, highly incompressible, uncemented fine interlocked grains exhibiting low in-situ void ratio, and high 
shear strengths and dilatancy under low normal stresses. In this work, a two-dimensional discrete element method (DEM) is developed to model the viscoelastic 
response of an oil sand formation. A digital sample of the oil sand with varying particle shapes and sizes were built using the discrete element software PFC2D. The 
oil sand microstructure was captured from an electron scanning micrograph image of a 14.5% bitumen content Athabasca oil sand. The micromechanical approach 
is based on discretizing the oil sands microstructure and modeling particle interactions (contacts) of its constituents at microscale. The quartz aggregates, water, and 
bitumen included in the digital samples were modeled using different contact models. Rheological data for the bitumen was obtained from a stress/strain controlled 
rheometer equipped with a parallel plate. This data was used to calibrate the parameters of the viscoelastic contact models among the different material phases. The 
resulting parameters of Burger’s model were used to simulate the micromechanical behavior of the material. A 2D DEM model with two temperatures and three 
loading frequencies subjected to a constant amplitude sinusoidal compression tests was simulated. The results of the study show a good agreement between the model 
prediction and the measured dynamic modulus and phase angle. This indicates that the linear viscoelastic DEM model developed is capable of simulating time-
dependent behavior of oil sands material. Additionally, the effect of rate of loading and temperature on the deformational mechanics of the material was evident in 
the dynamic modulus determination.
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Introduction
Oil sand is a dense granular material whose two main physical 

compositions are quartz grains and large quantities of interstitial 
bitumen, as shown in Figure 1. The pore spaces of oil sands are also 
filled with dissolved gasses and water [1-3]. The water is a thin film 
(~10 µm) that surrounds the quartz grains (about 99% water-wet) [4]. 
The connate water fills 10-15% of the pore spaces and the remaining is 
occupied by bitumen [1]. 

Figure 1(b) reveals that the grain-grain contact in oil sand 
formations exhibit mainly long and concavo-convex contacts. This 
structure is known as interpenetrative and is responsible for both the 
low void ratio and high shear strength [5]. Additionally, a large number 
of contacts per grain are formed because of the dense structure and 
consequently the formation undergoes high dilation at low normal 
stresses. The oil sand formations are mined for crude oil production in 
Northern Alberta, Canada. Surface mining methods, using ultra-class 
mining equipment such as the P&H 4100 BOSS ERS and the CAT 797 
dump trucks are used for bulk excavation of the overburden, providing 
access to the oil-rich formation. These equipment units impose varying 
magnitudes of static and dynamic loading in both the horizontal and 
vertical directions to the ground during excavation. This has led to 
equipment sinkage/rutting, lower frame fatigue failure [6], and wear, 
and tear of crawler shoes [7]. 

Soils in general exhibit both elastic (recoverable) and plastic 
(permanent deformation) behavior under loading. However, oil sands 
exhibit viscous flow in addition to elastic and plastic behavior under 
loading. The internal structure of the oil sands shows a discrete behavior 
as relative positions of quartz particles are changed under loading. The 
overall macromechanical behavior of the formation is determined by 

the interaction between its constituents because of its discrete structure 
and multiphase composition. Thus, a micromechanical model is 
required to comprehensively simulate the heterogeneous, nonlinear, 
and anisotropic behavior of the formation.

Over the last three decades, the stress/strain behavior of oil sands 
has been studied using mainly experimental, analytical, and numerical 
approaches. Many researchers have used experimental methods to 
(i) develop a constitutive model to predict the effective stress/strain 
behavior of drained and recompacted oil sands [8-10], (ii) characterize 
the shear strength and permanent deformation behavior [3,11-13], and 
(iii) study the microscopic structure [1,5]. The outcome of these testing 
procedures predicts the macromechanical stress/strain response of the 
formation. Additionally, the results of the studies show that quartz 
grain surface rugosity and grain angularity are functions for the higher 
residual strength of the oil sand material.

Within the last two decades, the use of numerical methods to 
model and simulate the behavior of particulate media has gained 
popularity as a tool for fundamental studies [14-16]. Two numerical 
methods commonly utilized are the finite element method (FEM) and 
DEM. Numerical approaches using FEM produce some advantages 
over the analytical and experimental approaches [17-21]. Material 
models developed from these methods are either micromechanical 
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[25] were employed to express the relationship between the microscale 
DEM model parameters and the macroscale material properties. 
A nonlinear optimization technique was applied to fit the Burger’s 
viscoelastic contact model using the dynamic modulus laboratory test 
at different loading rate and temperature. 

Material and methods 
Discrete element method 

The DEM technique is a numerical method introduced by [14] 
for rock mechanics analysis and then extended by [33] for soil as an 
alternative to continuum modeling of particulate media. In continuum 
mechanics, the soil is assumed to behave as a continuous material. 
The study does not consider the relative movement and rotation of 
soil grains necessary to understand the micro-level soil behavior. 
Newton’s second law and finite difference scheme are used to study 
the mechanical interactions between a large collection of independent 
and varying discrete particles with rigid or deformable bodies. As the 
particles and bodies (walls) interact with each other, creating contacts, 
a force-displacement law (usually termed contact model) is used to 
update the contact forces and moment arising from the relative motion 
at each contact. The translational and rotational motion of each particle 
is calculated from the contact forces and moment using Newton’s 
second law. The overall governing equation of motion for the dynamic 
analysis of the DEM system is expressed as Equation (1):

( )M D K F+ + = u u u 			    	                      (1)

u , u , u  are the linear and rotational acceleration, velocity, and 
displacement vectors, respectively; M is mass (including rotational 
inertia); D is damping; K is internal restoring force; and F is the external 
force (including moments).

The dynamics (translational and rotational motion) of the particle  
i with mass mi  and moment of inertia Ii  are governed by the Newton 
and Euler terms in Equation (2) and (3) [34,35]:

C nc f g a
i i i j ij k ik i i im = = ∑ +∑ + + +F F F F FX f 		                     (2)

. . ti i i i i i j ijω ω ω+ × = = ∑I I M  			                    (3)

i
X  and iω  are the translational and angular accelerations of 

particle i , respectively; iω  is the angular velocity of particle i; fi and ti 
are the sum of forces and torques acting on particle i respectively i; C

ijF
and Mij are the contact force and torque acting on particle i by particle 
j or rigid/flexible boundary; nc

ikF  is the non-contact force acting on 
particle i by particle k (example of non-contact force would be capillary 
force from a wet media); and f

iF , g
iF , a

iF  are the fluid, gravitational, 
and applied force on particle i. The soft contact approach is used where 
the particles are assumed to be rigid but allows overlap at the contact 
points. The contact force is related to the magnitude of the overlap 

or macromechanical in nature. In macromechanical approaches, a 
constitutive model is used to represent the global material behavior 
that considers the material as a continuum. On the other hand, the 
micromechanical approach is based on discretizing the composite 
microstructure and modeling the material properties of its constituents 
[22]. Recently, Gbadam and Frimpong [17], and Brown and Frimpong 
[18] used FEM to simulate the nonlinear mechanical response of 
geomaterials and oil sands in formation-tool interactions. FEM is 
based on continuum mechanics, which lacks the ability to handle 
large strains and discontinuous strain fields. Hence, model slippage 
between the aggregate particles, which has been cited as one of the most 
important mechanisms resulting in permanent deformation or rutting 
[23], cannot be addressed using FEM. Such limitation can be addressed 
by an alternative DEM approach. 

Over the past decade, several researchers have used DEM to 
simulate discontinuous materials with some success. Current research 
efforts indicate little or no application of DEM for modeling a composite 
material, such as oil sands. However, DEM has been used to model 
the heterogeneous multiphase material of asphalt mixtures [15,24], 
and a number of researchers have developed micromechanical models 
with the DEM [25]. The mechanical behaviors of asphalt mixtures are 
simulated with an elastic model [26-28], a viscoelastic model [15,25,29], 
and a cohesive model [30]. The elastic models are time-independent, 
and thus, not suitable to simulate a time-dependent material like the 
oil sands. The viscoelastic behavior of asphalt mastic is represented 
with Burger’s model. The Burger’s model is a four-component model 
consisting of a Maxwell element and Kelvin element in series, where 
the normal and shear stiffness changes with time. Under constant 
stress, Burger’s model can simulate instantaneous strain, viscoelastic 
response, instantaneous recovery, and permanent strain [15].

In oil sand modeling and simulation, little or no work has been 
done to formulate its micromechanical and microstructural behavior 
based on DEM. Recently, Tannant and Wang [31] conducted a 
numerical (using DEM) and experimental study of wedge penetration 
into compacted oil sand to measure the force required to push the 
steel wedge into oil sand formations. The force computed using the 
numerical model was about four to six times higher than that measured 
experimentally. This discrepancy between the model and laboratory 
test may be due to simplification of the DEM model.

The objective of this paper is to model the micromechanical and 
microstructural behavior of oil sands formation as a multiphase 
material using the DEM technique to understand its complete 
rheological behavior from elastic to viscoelastic cases. The study also 
performs the determination of macroscale material properties and 
the calibration of the microscale model parameters. In this study, 
macroscale material properties of bitumen [32] and quartz aggregates 
[13] are measured in the laboratory. A set of equations developed by 

(a)                              (b)

 
Bitumen

Quartz

Water

Gas bubble

Figure 1. Microstructural section of Athabasca oil sand: (a) In-situ structure of oil-rich quartzose oil sand [1]; (b) Idealized section of in situ oil sand [5]
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and is computed using a force-displacement law (contact model). The 
development and implementation of a realistic contact model at the 
micro level is the heart of the particle-based simulation. The simplest 
contact model that can be selected consists of a spring and dashpot 
connected in series, where the contact force is computed in equations 
(4) and (5) [36]: 

n n nF k u= 					                         (4)

FS S Sk u= −� � 					                     (5)

Fn is force in the normal direction of the plane of the contact, un 
is the overlap between the particles in the normal direction, FS is the 
tangential force, and uS  is the relative displacement in the tangential 
direction. Figure 2 illustrates the typical forces and torques at particle 
contacts.

Local constitutive models or contact models are used to characterize 
the different material behavior at the macro level by calculating the 
contact forces and torques. A full description of the DEM algorithm is 
published in [14,33,37]. 

Design of PFC model for oil sands

In this study, the oil sand numerical specimen was constructed 
with a given number of clumps generated with pore spaces to match 
the actual particle size distribution (PSD). Figure 3 shows the PSDs 
of the real sample and the corresponding generated numerical model 
in PFC2D. Due to high computational expense, the fine particles (i.e., 
passing #200 sieve or <0.075 mm) were not included in the PFC model. 

Oil sands with water and bitumen content of 2.2% and 14.5%, 
respectively, were modeled and simulated. The bitumen was 
microscopically represented by two sets of Burger’s element model 
in the normal and the tangential direction at each contact. The water 
phase is not modeled explicitly but is represented by a pendular liquid 
bridge that forms between the contacting particles. To duplicate the 
microstructure of the formation (including aggregates shapes and 
sizes, the spatial distribution of bitumen, and void spaces), a digital 
sample of a thin section was delineated to categorize the various phases 
as shown in Figure 4. 

Three types of contacts that represent three different interactions 
within the sample are illustrated in Figure 5. The three corresponding 

contact models are associated with each contact to characterize the 
overall constitutive behavior of the oil sand material. The elastic linear 
model was defined at contacts between boundary walls and adjacent 
particles. The spring elements with stiffness kn  and kS  were used for 
the contact interactions between adjacent particles and boundary walls. 

A clump with a mass, centroid position, and inertia tensor 
connected by elastic elements (springs and dashpots) in the normal 
and tangential directions at each contact is used to model the quartz. 
The interactions within a bitumen or between particle-bitumen are 
modeled with Burger’s element in the normal and shear directions. 
Burger’s element model, shown in Figure 6, provides a Kelvin model 
(linear spring and dashpot connected in parallel) acting in series with 
a Maxwell model (linear spring and dashpot connected in series) [39].

Equations (6), (7), and (8) express the constitutive behaviors of a 
Burger model at a contact [25,39]:

n mn mc k kn k kn mn mkf C u u K u C K u= = + =  		                     (6)

s ms mc k ks k ks ms mkf C K C Kδ δ δ δ= = + =  		                       (7) 

n k mk mc s k mk mcu u u u u δ δ δ= + + = + + 		                      (8)

fn and fS are contact forces in normal and shear directions, 
respectively, at a contact; un  and uS are the relative displacements in 
the normal and shear directions at a contact, respectively; uk and δn  
are normal and shear displacement of the Kelvin model element; mku  
and  δmk are normal and shear displacements of the spring element of 
the Maxwell model; umc  and δmc are normal and shear displacements 
of the dashpot element of the Maxwell model; Kkn, Kmn, Kks, and Kms are 
stiffness of spring elements; and Cmn, Cms, Ckn, and Cks are viscosities of 
dashpot elements. 

Using Equations (6)-(8), the second-order differential equation for 
contact force, f is given by Equation (9):

1 1k k m k m
m

k k m k m k

C C C C Cf Cm f f C u u
K K K K K K
  

+ + + + = ± ±  
  

    	                    (9)

The contact relations (model parameters) between two microscopic 
particles are directly defined at the contacts when using Burger’s 
contact model. These model parameters cannot be determined directly 
from the experimental results. Therefore, a macroscale Burger’s model, 
as shown in Figure 7, is correlated to an experimental dynamic shear 
modulus and phase angle data. 

The response of Burger’s model subjected to either dynamic stress 
or strain is characterized using the complex compliance or the complex 
modulus and its constitutive equations can be derived as follows: The 
complex compliance is given in Equation (10):

( )
*

*

0

1 1 1

m m k k

G
K i C K i C

εω
σ ω ω

= + + +
+

*ε                                        (10)

σ and *ε  are the stress and strain at time equal to zero and  is the 
radial frequency. Equation (11) is normally decomposed into real and 
imaginary portions as shown in Equation (12-14) [40].

*( ) ( ) ( )G G iGω ω ω′ ′′= + 			                    (11)

2 2 2

1( ) k

k k

KG
Km K C

ω
ω

′ = +
+

			                    (12)

2 2 2
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m k k

CG
C K C

ωω
ω ω

′′ = +
+

			                  (13)

The dynamic complex modulus *E  is the reciprocal of the complex 
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Figure 2. K Forces acting on particle (ball) i with particle (clump) j and non-contacting 
particle [34].
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Figure 3. Particle size distribution of oil sand sample.
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Figure 4. Internal structure of oil sand: (a) CT scan image [38]; (b) Numerical sample.
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Figure 5. Particle contacts and corresponding force-displacement models of oil sand in the normal direction: (a) Microstructure (Takamura, 1982); (b) Adjacent aggregates (quartz-quartz 
contact); (c) Within bitumen (disc-disc contacts); (d) Between aggregate, water, and bitumen.

compliance, which is given in Equation (15):
*

2 2 2

2 2 2 2 2 2

1 1 1
* ( ) ( ) 1 1 k

m k k m k k

E
G G G CKk

K K C C K C
ω

ω ω ω

= = =
′ ′′+    

+ + +   + +   

               (14)

The phase angle δ  can be expressed as in Equation (16):
2 2 2 2

1 1
2 2 2tan tan m k k k m

m k k k m

K K C C CG
G C K C K K

ω ωδ
ω ω

− −  ′′ + + = =   ′ + +   
	                   (15)

Once the macroscopic parameters are obtained, the microscopic 
input data were determined using the set of equations developed by   
Liu, et al. [25]. 

To obtain the macroscopic parameters, a nonlinear fitting technique 
must be utilized to fit the nonlinear experimental data from dynamic 
shear rheometer measurements. To fit the Burger’s model parameters, 
Papagiannakis, et al. [41] evaluated several objective functions and 
found that the objective function proposed by Baumgaertel and Winter 
[42], as given in Equation (10), provided the best fit. Two rheological 
measurements were fitted simultaneously, namely the storage and the 
loss shear moduli. The fitting procedure was based on minimizing an 
objective function (Equation 17) that is equal to the sum of squares of 
errors in predicting the storage and shear loss moduli over the available 
range of testing frequencies. Recently, this method was implemented to 
fit Burger model parameters for asphalt mastic [22,43].
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Subject to Equations (18) and (19):

 0,   0  k mK K> > 					                    (17)

 0,  C  0  k mC > > 					                     (18)

0
jG′ and 0

jG′′  are respectively the storage and loss shear moduli 
measured at the jth frequency jω ; jG′  and jG′′  are respectively the 
predicted storage and loss shear moduli at the jth frequency jω  using 
the Burger model; and m is the number of data points.

Verification of numerical model

The DE formulation and implementation of the linear viscoelastic 
model of oil sands bitumen developed in this study were verified through 
comparison between closed-form solution and DEM simulation. The 
response of the Burger model under constant stress and strain solved 
numerically and analytically are presented in Figure 7.

Figure 7 (a) shows the stress response of the model under constant 
strain of 0.01. The result shows that a perfect match between the 
analytical and numerical solutions. Figure 7 (b) presents the model 
response under a creep load (constant stress) of 10N for 5 seconds. As 
can be seen, both numerical and closed-form solutions produced the 
same results with a good fit. These results indicate that the proposed 
particle-based linear viscoelastic model of oil sands material in this 
study is appropriate.

Results and discussion
The results of both experimental and numerical tests were 

analyzed. The experimental test was conducted on the bitumen to 
determine its rheological measurements (storage and loss moduli). 
The test procedure, sample preparation, and results of the laboratory 
experiments are reported in [32]. 

Laboratory measurements

Two laboratory test data were used to: (i) measure the dynamic 
modulus and phase angle of the bitumen for determining the Burgers 
model parameters [32] and (ii) measure the complex modulus and 
phase angle of the oil sands formation for validation of the 2D DEM 
model [13]. The rheological behavior of the bitumen was obtained using 
the dynamic shear rheometer (DSR) under a stress/strain controlled 

condition. Behzadfar and Hatzikiriakos [32] recently conducted an 
experiment to measure the dynamic modulus and phase angle of 
bitumen at different temperatures, applying frequencies from 0.005 to 
500 rad/s using the DSR. The temperature range of the experimental 
testing varied from -30°C to 90°C. The dynamic modulus and phase 
angle of bitumen is depicted in Figure 8 at selected temperatures (-30, 
0, 10, 30, 60 and 90°C).

Figure 8(a) shows that for the same frequency, the magnitude of the 
dynamic modulus generally decreases with an increase in temperature. 
Also, at the same temperature, the magnitude of the dynamic modulus 
increases with an increase in the loading frequency. Conversely, the 
magnitude of the phase angle increases with an increase in temperature 
from -30 to 30°C for the same frequency but decreases with a 
temperature range of 60 to 90°C. 

The nonlinear least squares (lsqnonlin) solver provided in the 
MATLAB optimization toolbox was utilized for minimizing the 
objective function given in Equation (17) and subject to Equation (18-
19). The microscale model parameters fitted to the bitumen data are 
listed in Table 1. 

Figure 9 shows the quality of fit of the Burger model to bitumen 
measurements obtained using the DSR at different temperatures. The 
figure shows that this model yields a good fit to the experimentally 
obtained dynamic shear modulus at 0 and 30°C. A less perfect fit still 
within the acceptable limits is obtained at -30°C.

DEM simulation of cyclic uniaxial compressive test for oil 
sands

A series of uniaxial compressive sinusoidal dynamic loading tests 
were conducted with the viscoelastic model developed in this study. 
Table 2 list the viscoelastic model input parameters and other relevant 
data used for the simulation. The compressive dynamic loading was 
applied to the top and bottom platens of the digital sample, shown 
in Figure 3(b), while the two vertical boundary walls were fixed in all 
directions. 

The simulation test involves two stages: (i) an isotropic 
consolidation, and (ii) uniaxial compressive sinusoidal loading. Before 
the cyclic uniaxial compression testing, the digital sample was brought 
to equilibrium under an isotropic stress state. The sample was loaded in 
a strain-controlled manner were the boundary walls are adjusted using 
a servo-controlled mechanism to achieve a target confining stress [39]. 
In this study, haversine stress at different frequencies (10, 7, 5, and 3 
Hz) was applied to the loading platens. Both the vertical and horizontal 
walls moved to gradually apply the required stress. Results for the 
viscoelastic DE simulation of oil sand material with the corresponding 
model parameters under compressive dynamic sinusoidal loading are 
presented in Figures 10 to12. 

Figure 10 presents the applied sinusoidal compressive loading and 
the corresponding strain calculated from the displacement of the top 
and bottom platens. Dynamic modulus ( and phase angle ( ) are 
calculated from the applied stress and strain response plots in Figure 
10 using equation (20): 

* , 360max min

max min

tE
T

σ σ δ
ε ε

−
= = ×

−
� 			                     (19)

Maxwell section Kelvin section

K

u

u

K

u

Figure 6. Burger’s model.

Temp (°C)

-30 27.88 732.14 387.36 122.95
10 1.13e3 1.16e4 4.39e4 1.68e4

Table 1. Burgermodel parameters fitted to athabascabitumen.
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(a) (b)

Figure 7. Verification of the Burger Model: (a) Stress relaxation; (b) Creep.

Figure 8. Measured rheological properties of bitumen at selected temperatures: (a) Dynamic modulus versus frequency; (b) Phase angle versus frequency [32].

Parameters Value
Calibrated Burger’s Model @-30°C:

Kelvin normal stiffness, Kkn 3.87 x 1011 Pa
Kelvin normal viscosity, Ckn 1.23 x 1011 Pa

Kelvin shear stiffness, Kks 1.29 x 1011 Pa
Kelvin shear viscosity, Cks 4.1 x 1010 Pa

Maxwell normal stiffness, Kmn 2.8 x 1010 Pa
Maxwell normal viscosity, Cmn 7.32 x 1011 Pa

Maxwell shear stiffness, Kms 9.3 x 109 Pa
Maxwell shear viscosity, Cms 2.44 x1011 Pa

Calibrated Burger’s Model @10°C:
Kelvin normal stiffness, Kkn 4.39 x 1012 Pa
Kelvin normal viscosity, Ckn 1.68 x 1010 Pa

Kelvin shear stiffness, Kks 1.46 x 1012 Pa
Kelvin shear viscosity, Cks 5.6 x 109 Pa

Maxwell normal stiffness, Kmn 1.13 x 1012 Pa
Maxwell normal viscosity, Cmn

Maxwell shear stiffness, Kms

1.16 x 1010 Pa
3.8 x 1011 Pa

Maxwell shear viscosity, Cms 3.87 x109 Pa
Density of quartz aggregates 2650 kg/m3

Coefficient of friction 0.5
Porosity 0.32 

Digital sample size 170 x 240 mm

Table 2. Simulation input parameters.  and  are the applied maximum and minimum stress, 
maxε  and minε  are the maximum and minimum predicted strain 

response, t�  is the time difference between two adjacent peak stress 
and strain, and T is the loading period, which is the inverse of the 
loading frequency. The predicted and measured *E  and δ  are plotted 
in Figure 10.

High strain accumulation was observed for the first loading peak 
point at 10°C rather than at -30°C, but the accumulation decreases 
gradually as the frequency and loading cycle increases as shown in 
Figure 10. Generally, for the same loading frequency, the magnitude of 
the strain decreases as loading frequency and temperature increases. As 
expected, the oil sand material becomes softer at a higher temperatures, 
and thus, undergoes high deformation under loading. The viscoelastic 
response of the oil sand material is depicted in the reduction of strain 
accumulation with the increase of loading cycle for both temperatures, 
as shown in Figure 10(d). The reduction in maximum and minimum 
strain peak as the loading cycle increases is due to the slippage and 
rearrangement of the discrete quartz particles under loading. This 
phenomenon leads to some permanent deformation on the removal 
of the load. 

At -30°C, the maximum strain peak decreases from -0.030 to 
-0.03065 as the loading frequency decreases. Conversely, the minimum 
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Figure 9. Measured and predicted dynamic shear moduli.

(a) (b) 

(c) (d)

Figure 10. Strain response under constant stress amplitude loading due to application of three loading cycles for each loading frequency and temperature: (a) 10 Hz, (b) 7 Hz, (c) 5 Hz, (d) 
Strain response at given temperatures and frequencies.



Gbadam E (2017) Micromechanical and microstructural DEM modeling of the viscoelastic behavior of oil sands

Adv Mater Sci, 2017         doi: 10.15761/AMS.1000116  Volume 2(1): 9-11

strain value increases as the loading frequency increases from -0.04112 
to -0.0405. However, at 10°C, the maximum strain decreases from 
-0.03247 to -0.03505 (a difference of 7.9%) as loading frequency 
decreases. On the other hand, the minimum strain value ranges from 
-0.0326 to -0.03772, a decrease of 13.6%. The results indicate that the 
rate of loading and temperature affects the deformational behavior of 
the oil sand material. This observation was also reported in field studies 
conducted by Dehmoobed Sharif-abadi and  Grain Joseph [44].

Figure 11 presents the predicted versus experimentally measured 
[13] dynamic modulus and phase angle for an oil sand material. The 
model prediction compared well with the measured phase angle at 
10°C, while it was higher than the measured dynamic modulus at 
-30°C. On the other hand, the measured dynamic modulus at -30°C 
was close to the predicted model. 

The stress/strain response behavior (i.e., hysteresis loop) is 
presented in Figure 11 at the corresponding loading frequencies (5, 7, 
and 10 Hz). 

The area under the loop decreases with increasing loading 
frequency at -30°C, as shown Figure 12(d). However, the area under 
the loop increases as loading frequency decreases. This implies that the 
viscoelastic dissipated energy increases with cyclic loading.

Conclusions
This paper modeled and simulated the linear viscoelastic 

discrete element behavior for oil sands material based on Burger’s 
element model. The microstructure was captured by digitizing a 
two-dimensional scanning electron image to delineate the different 
constituents of the oil sand material. To study the micromechanical 
behavior within the material, three types of contacts were considered: 
aggregate-aggregate, aggregate-bitumen, and aggregate-water-
bitumen contacts. The quartz aggregates were modeled as a rigid disc 
and the linear contact model was defined at the interaction among 
the aggregates. The time- and temperature-dependent bitumen was 
modeled with viscoelastic material model. Contact interactions within 
the bitumen and bitumen-quartz was defined with the Burger’s model. 
A nonlinear optimization technique based on minimizing the sum 
of squares of errors was developed to calibrate the microscale model 
parameters from lab-based macroscale material properties. A dynamic 
sinusoidal loading with constant amplitude was applied to the bottom 

and top platen to simulate the viscoelastic material behavior of the oil 
sands with the calibrated model parameters. 

The following can be concluded from the results of this study:

(i)	 The aggregate shape and PSD responsible for permanent 
deformation were accounted for in this micromechanical 
model. Thus, it can simulate the discrete mechanical behavior 
of oil sand material;

(ii)	Oil sand material can be simulated with a viscoelastic model 
based on Burger’s contact model over cyclic loading. It 
accounts for the loading rate and temperature dependency of 
the material;

(iii)	 The micromechanical and microstructural viscoelastic model 
developed in this study can predict the dynamic modulus and 
phase angle of the material with a maximum error of 13.6%;

In the future, the following work will be addressed in ongoing 
studies: (i) construct a master curve to be used to model the temperature 
effects of oil sands material and (ii) quantitatively determine the 
capillary force at the aggregate-water-bitumen interface and decide if it 
should be included in the model.
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