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Abstract
The Lattice Boltzmann Method (LBM)-D2Q9 model is used to simulate velocity development and mass transfer of flows in casting. To quantify the basic flows 
in casting, stable flows in planes and pipes are simulated, which confirmed the LBM-D2Q9 model’s validation and numerical stability. Solute diffusion and vortex 
development are also investigated using LBM-D2Q9 model. The results show that the LBM model is capable to describe the velocity and solution field, which in 
a good match with the analytical calculations. 
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Introduction
The ongoing demanding of advanced aero engines, which possess 

high thrust and lightweight, have caused a tremendous application 
of the near net shape forming technology of complex thin-wall 
superalloy casts [1]. During the casting, the solidification sequence, 
temperature and solute concentration distribution are affected by the 
complexity of geometry shape and thinness of the cast wall. These’re 
bringing a challenge for cast perfect forming and metallurgical quality 
improvement. It has been found that counter-gravity casting with 
additional pressure is more capable for complex thin wall cast near net 
shape forming than regular gravity casting [2-3]. 

During the pressured counter-gravity casting, forming and 
solidification are experiencing forced convection and constrained space 
condition. The mechanisms of melt flow and crystallization and the 
relation of microflows between dendrites and porosity suppression and 
microstructure evolution are complicated and have been a top focused 
area in the solidification researches [3-5]. Lattice Boltzmann method 
(LBM) has been proved that is an effective and powerful method to 
gain a numerical solution of Navier-Stokes equation [6], compared to 
other traditional numerical solutions of the Navier-Stokes equation, 
like Lax-Wendroff, MacCormack or SIMPLE method. 

To reveal the solidification microstructure evolution of superalloy 
complex thin-wall casting under complex constrained space and forced 
convective condition, simulations of the mass and heat transfer and 
distribution in this complex constrained cast is needed to carry out to 
understand the solidification condition. In the first step, it’s our goal to verify 
the LBGK model for representing the basic thermo-flow in the casting.

Lattice Boltzmann modeling

In this work, Lattice Boltzmann Method (LBM) is adapted to 
simulate fluid flow, solute and heat transfer. The LBM is a discrete 

approximation of Boltzmann equation, based on gas kinetic theory. 
The BGK approximation, proposed by Bhatnagar, Gross and Krook 
who replaced the collision term J(ff1) by a single relaxation time Ωf [7], 
has been widely accepted and utilized to solve Boltzmann equation. 
The Lattice BGK (LBGK) evolution equation can be described as:

( ) 1, ( , ) ( , ) ( , ) ( , )eq
i i i i i if x e t t t f x t f x t f x t F x t

fτ
 + ∆ + ∆ − = − +                (1)

where, fi(x,t) is the discrete-velocity distribution function, it describes 
the density of particle with velocity ci at position and time (x,t),ei 
represents the discrete velocity space {e1,e2,…ei},Δt is the time step, τf 
is the relaxation time, ( , )eq

if x t  is the discrete equilibrium distribution 
function, ( , )iF x t  is the force term caused by physical field.

The LBM also can be used to simulate the solute transport and 
heat transfer drive by a different mechanism such as diffusion and 
convection. Similar to the LBM for fluid flow, the solute distribution 
function ( , )ig x tσ  can be expressed as follow, using the passive scalar 
model [8].

,1( ) ( , ) ( , ) ( , ) ( , )eq
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g
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τ
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where σ represents solute, τg is the relaxation time for the solute field, 
, ( , )eq

ig x tσ  is the equilibrium distribution function for the solute field, 
( , )iG x tσ  is the solute source term.
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Results and Discussion
Stable flows in planes and pipes

When the melt forming in plane or pipe, stable flows can be 
achieved when casts are large enough. In present work, we simulated a 
typical plane flows by means of LBM and verified the results compared 
with an analytical solution and numerical stability in different meshes. 

As shown in the Figure 1, alloy melt is forming between two planes 
with distance h, assumed two planes have infinite width and length 
and the melt is incompressible viscous fluid. The upper plane is a 
velocity boundary with velocity U and the bottom plate is fixed. In this 
circumstance, the governing equation and its analytical solution are: 

0 0uV
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∇ ⋅ = = +
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= = ≤ ≤

Using the LBGK-D2Q9 model, the streamwise velocity distribution 
of a stable plane flow is simulated as shown in the Figure 2. Reynolds 
number is set to 100 assuming there is a stable flow. Fluid density ρ is 
set to unity and upper velocity U is 0.1 and the computation area are 
meshed by 156×156, 206×206 and 256×256 respectively. The colored 
velocity distribution suggested that the developed plane flow velocity 
differs in layers. The dimensionless velocity profile at the position of 
the middle x-axis is compared with the analytical solution, shown in 
the Figure 3a. The LBM results in a good agreement with the analytical 
solution, suggesting LBM is a validated model for simulating basic 
stable flows. In the Figure 3b, the results suggested that LBM in three 
different mesh have similar numerical stability. In the Figure 4, the 
velocity profile u = u(y) evolved from a shapely curve to a diagonal line 
as the timestep increased, suggesting the flow developed from unstable 
to stable flow. LBM is capable to simulate the dynamic process fluid 
flow in plane. 

The LBM for temperature is calculated using internal energy 
distribution function model [9]. The internal energy distribution 
function hi(x,t) is coupled by velocity distribution function fi(x,t), 
which can be written as: 

1( ) ( , ) ( , ) ( , ) ( , )eq
i i i i i i

h

h x e t t h x t h x t h x t H x t
τ

 + ∆ + ∆ − = − − +                        (3)

where τh is the relaxation time for temperature field, ( , )eq
ih x t  is the 

equilibrium distribution function, Hi(x,t) is the temperature source 
term. 

The two-dimensional D2Q9 model is chosen as the present discrete 
velocity model. Velocity space is discretized into a square lattice 
including nine discrete velocities ei, as shown as:

where 
xc
t

∆
=
∆  is the lattice speed, Δx is the lattice space, Δt is the time 

step. Related macroscopic variables such as density ρ, velocity u, 
concentration Cσ and temperature T, can be calculated from the 
relevant distribution functions as listed:
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The equilibrium distribution functions, which is related to the 
discrete velocity model, are defined as:
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where wi is weights, w0 = 4/9, w1,2,3,4 = 1/9, w5,6,7,8 = 1/36. 

The relaxation time for velocity, solute and temperature field are 
related to kinematic viscosity v, solute diffusion coefficient D, and 
thermal diffusion coefficient α.

2 2 21 1 1, ,
3 2 3 2 3 2f g h
c c cv t D t tτ τ α τ     = − ∆ = − ∆ = − ∆     
     

Boundary condition has a significant effect on the simulation 
results. It should be implemented accordingly to reflect its physical 
nature and without compromising its numerical stability. In the 
present simulation, the periodic boundary condition is implemented 
at left and right wall, while non-equilibrium extrapolation scheme [11] 
is used at the top and bottom wall, assumed that there is no fluid flow 
over the top and bottom wall. 

 

Figure 1. A plane flow geometry illustration

Figure 2. Velocity distribution in the plane flow using LBGK-D2Q9 model
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Solute diffusion in flows

Solute distribution has a significant influence on dendrite growth 
and microstructure evolution. During the casting, solute diffusion 
is driven by both fluid and temperature fields. LBM Passive Scalar 
Model [8] has been proved that it’s an effective model for simulation of 
solute diffusion. In present simulation, we consider a solute diffusion 
from the plate while a stable flow passes by, as shown in Figure 9. 
A uniform flow pass with velocity u0 from left to right, while solute 
diffuses from the bottom wall with a concentration Cp. The left, right 
and upper boundaries are considered as an infinite wall. The left and 
bottom boundaries are the Dirichlet boundary with concentration 0 
and Cp, respectively, while the top and right boundaries are considered 
as the Neumann boundary with conditions / 0c y∂ ∂ = and / 0C X∂ ∂ = , 
respectively. When the flow is stable, the solute governing equation and 
analytical solution are (neglect solute diffusion along x-axis):

2

0 2

C Cu D
x y

∂ ∂
=

∂ ∂

0
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4p
yC x y C erfc
Dx
u

=

Melt flows in the pipe is also a common circumstance in casting. 
A geometry illustration and physical description are given in Figure 5. 
Similar to the 2D-plane flow above, a fluid flowing between two planes, 
except both upper and bottom wall are fixed. In x-axis direction, there 
is pressure gradient /p x∂ ∂  between inlet and outlet. The governing 
equation and analytical solution are:

2
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The maximum velocity can be achieved at the position of pipe 
middle line: 

2

max ( )
8 2

dp h hu y
dx µ

= =

In order to investigate, LBM simulation is carried out using the 
LBGK-D2Q9 model as same as in plane flow. The streamwise velocity 
distribution of the LBM simulated pipe flow is shown in the Figure 6. 
The colored velocity distribution demonstrated that pipe flow velocity 
is zero at the upper and bottom wall because of the viscous stress while 
achieving maximum velocity at pipe middle line. The dimensionless 
velocity profile at the position of the middle x-axis is compared with 
the analytical solution, as shown in the Figure 7a. The LBM simulation 
and analytical solution in a good agreement. And also, LBM simulation 
shows a good numerical stability in different meshes as in Figure 7b. 
In the Figure 8, the velocity profile u = u(y) developed into a parabolic 
curve as the timestep increased. 

Figure 3. (a) the velocity profile u=u(y) at the middle plane flow simulated by LBM 
compared with analytical results (b) the velocity profile u=u(y) at the middle plane flow 
simulated by LBM with three different meshes, 156×156, 206×206 and 256×256

Figure 4. The evolution of velocity profile u=u(y) as timestep n increasing, simulated by 
LBM, in the middle of the plane flow

Figure 5. A Pipe Flow Geometry Illustration

Figure 6. Velocity distribution in pipe flow using LBGK-D2Q9 model

Figure 7. (a) the velocity profile u=u(y) at the middle pipe flow simulated by LBM 
compared with analytical results (b) the velocity profile u=u(y) at the middle pipe flow 
simulated by LBM with three different meshes, 156×156, 206×206 and 256×256
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Figure 8. The evolution of velocity profile u=u(y) as timestep n increasing, simulated by 
LBM, at the middle of pipe flow

Figure 9. A Solute Diffusion in flows Geometry Illustration

Figure 10. Concentration profile compared with analytical solution

As shown in the Figure 10a, the LBM simulated concentration 
distribution of a concentration diffused from a plate with a flow 
are compared with the analytical results Figure 10b and a pure 
concentration diffusion without a flow Figure 10c. To verify the 
LBM simulation, the concentration profiles along the y-axis at three 
different x-axis positions, which have been nondimensionalized x/
Ny=2.5, 5 and 7.5 are compared with the corresponding analytical 
concentration profiles in the Figure 11. The comparison shows that the 
good agreement between the LBM simulation and analytical solution. 
These results demonstrated the validation of LBM model to describe 
concentration evolution under a dynamic flow circumstance. This 
result could be a benchmark work for us to further investigate solute 
distribution in a more complicated fluid flow situation. 

Vortexes in the casting cavity

Casting flow could be violent during molten metal pouring. It is 
common that molten metal has large initial flow velocity, unstable flow 

and vortexes, even turbulence. These unstable flows could also influence 
the casting quality [12-13]. In present work, we consider a simplified 
simulation to describe vortexes formation in casting cavity at different 
Reynolds number. As shown in Figure 12, in a closed square cavity, 
the right, left and bottom wall are fixed as the velocity boundaries are 
zero, while the upper wall is set to an initial velocity U from left to 
right. As the flow developed to stable flow, a primary vortex would 
exist in the cavity center and two little one in the lower left and lower 
right, respectively. By valuing Reynolds number Re=100, 1000, 10000 
and 20000, two different relaxation time algorithms, Single-Relaxation 
Time (SRT) and Multi-Relaxation Time (MRT), are used to compare 
the numerical stability of these two algorithms in high Reynold number 
Re=10000 and 20000. The LBM simulation result was then compared 
with other results used different numerical method. 

In the Figure 13, total velocity and streamline distribution in 
different Reynolds number 100, 1000, 10000 and 20000 are simulated 
using SRT-LBM. Especially, MRT-LBM simulations are implemented 
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Figure 13. Total velocity and streamline distribution in different Reynolds number 100, 1000, 10000 and 20000 using SRT and MRT algorithm

Figure 11. Concentration diffusion along with the y-axis at x/Ny=2.5, 5 and 7.5 position

Figure 12. A Vortexes in Casting Cavity Geometry Illustration
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in high Reynolds number 10000 and 20000. As the Reynolds number 
increased, it is can be seen from the simulation results that Reynolds 
number controlling the flow mechanism. When , there are three 
vortexes in the cavity. One primary vortex in the center of the cavity 
and two secondary vortexes in the lower left and lower right. When Re 
increase to 10000, the third secondary vortex presents at the top left. 
When Re increase to 20000, a tertiary vortex appears at the lower right. 
As the Re increasing, the primary vortex moves to the center of cavity. 
Table 1 gives a quantitative measurement of each vortex position. The 
present simulation results are compared with the other simulation, 
which shows a good agreement. 

Conclusion
LBGK-D2Q9 is an effective model to simulation 2D mass transfer 

problems, such as stable flow, solute diffusion and vortex in the casting. 
When the LBGK-D2Q9 model is used for simulating stable flow, it is 
capable have the good agreement with the analytical solution. When 
the LBGK-D2Q9 model is used for simulating vortex, it is capable to 
compete with traditional CFD method.
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Vortex Positions Method Mesh
Primary Vortex Lower Left Lower Right

Ref.
x y x y x y

Re=100
CFD 129*129 0.6172 0.7344 0.0313 0.0391 0.9453 0.0625 [14]

SRT-LB 203*203 0.6109 0.7358 0.0341 0.0394 0.9461 0.0591 [15]
SRT-LB 257*257 0.6167 0.7392 0.0266 0.0425 0.9426 0.0602 This work

Re=1000

CFD 129*129 0.5313 0.5625 0.0859 0.0781 0.8594 0.1094 [14]
MRT-LB 203*203 0.5320 0.5616 0.0837 0.0788 0.8572 0.1083 [15]
SRT-LB 257*257 0.5324 0.5660 0.0818 0.0763 0.8648 0.1129 This work
MRT-LB 257*257 0.5328 0.5667 0.0820 0.0749 0.8648 0.1126 This work

Table 1(a). Primary and bottom corner’s vortex position at different Reynolds number 100 and 1000 compared with other results.

Vortex 
Positions Method Mesh

Primary Vortex Lower Left Lower Right
Ref.

x y x y x y

Re=10000

CFD 257*257 0.5117 0.5333 0.0586 0.1641 0.7656 0.0586 [14]
MRT-LB 417*417 0.5156 0.5262 0.0795 0.1103 0.7681 0.0598 [15]
SRT-LB 257*257 0.5122 0.5305 0.0606 0.1583 0.7766 0.0613 This work
MRT-LB 257*257 0.5124 0.5291 0.7813 0.0591 This work

Top Left 2nd Lower Right
x y x y

0.0703 0.9141 0.9336 0.0625 [14]
0.0887 0.9171 0.9328 0.0623 [15]
0.0710 0.9095 0.9413 0.0563 This work
0.0633 0.9202 0.9419 0.0545 This work

Table 1(b). Primary and bottom corner’s vortex position at Reynolds number 10000 compared with other results
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