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Abstract
Homocysteine (Hcy) and its metabolite Hcy-thiolactone (HTL) are implicated in cardiovascular disease (CVD). Recent studies show that HTL is a predictor of 
acute myocardial infarction in CVD patients, independent of established risk factors and plasma total Hcy.  HTL is formed in all cell types as a result of error-editing 
reactions in protein biosynthesis. Its ability to N-homocysteinylate protein lysine residues and cause protein damage has been mechanistically linked to the pathology 
of CVD induced by hyperhomocysteinemia. Specific HTL-detoxifying mechanisms have been identified that can potentially be exploited for modulation of HTL 
levels and the risk of CVD. 
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Introduction 
Traditional risk factors account only for half of cardiovascular 

disease (CVD) cases. Thus, there is a need to study other CVD risk 
factors and elucidate their mechanism of action.  Mildly elevated 
plasma total homocysteine (tHcy) is an emerging risk factor [1] that 
is  associated with increased risk of CVD and is a strong predictor 
of mortality in cardiovascular patients [2]. Folic acid and B-vitamin 
supplementation lowers plasma tHcy and has been studied for primary 
and secondary prevention of CVD outcomes in large-scale randomized 
controlled trials (RCTs). In individual RCTs, lowering plasma tHcy by 
folic acid and B-vitamin supplementation protects against stroke [3,4], 
but not myocardial infarction [5,6]. However, meta-analyses of 8 RCTs 
involving 37,485 individuals [7] completed by the end of 2009 and 24 
RCTs involving 57,952 individuals [8] completed by April 2013 show 
that tHcy-lowering by B-vitamin supplementation has no effect on 
CVD outcomes.

A possible reason for these dissonant results is that tHcy is a 
composite marker comprising of different Hcy species, but not 
encompassing a chemically reactive and toxic Hcy metabolite─Hcy-
thiolactone (HTL)─which has been independently implicated in 
CVD [9]. Indeed, recent studies show that HTL is a predictor of acute 
myocardial infarction in CVD patients, independent of established 
risk factors and plasma total Hcy [10]. Moreover, HTL levels are not 
reduced by folic acid/vitamin B12 treatments that lower Hcy [10]. HTL, 
produced in an Hcy-editing reaction during protein biosynthesis 
[11,12], can promote CVD due to its ability to form isopeptide bonds 
with protein lysine residues, which generates toxic N-Hcy-proteins 
with pro-inflammatory, pro-thrombotic, pro-atherogenic, and pro-
amyloidal properties [9].

Because HTL accumulation compromises biological integrity, 
humans and animals have evolved mechanisms to eliminate or 

detoxify HTL. One such mechanism involves enzymatic hydrolysis 
by HTL hydrolases (HTLases): serum HTLase/paraoxonase 1 (PON1) 
[13], cytoplasmic HTLase/bleomycin hydrolase (BLMH) [14], and 
mitochondrial HTLase/bisphenol hydrolase-like (BPHL) [15-17]. 

Paraoxonase 1
PON1 is a calcium-dependent enzyme synthesized in the liver and 

circulating in the blood attached to high-density lipoprotein HDL; it is 
the first well-characterized HTLase [13,18].  Pon1, named for its ability 
to detoxify the organophosphate paraoxon, is implicated in CVD and 
Alzheimer’s disease (AD). For example, low serum Pon1 activity is a 
risk factor for dementia [19] and AD [20,21], while Hcy is a negative 
determinant of Pon1 activity [22,23] and a risk factor for AD [24]. 
Emerging evidence strongly suggests that PON1 activity is linked to 
CVD risk. For instance, PON1 protects against (high-fat diet-induced) 
atherosclerosis in humans [25,26] and mice [27]. The cardio-protective 
function of PON1 has been mechanistically linked with its ability to 
modulate indices of oxidative stress [26,27] and to detoxify HTL 
[13,28,29]. HDL and purified PON1 have the ability to hydrolyze HTL 
[13] and to protect against the accumulation of N-Hcy-protein in vitro 
[30,31] and in vivo in humans [28].

Substrate specificity studies of purified human serum PON1 
show that L-HTL is a preferred physiological substrate [13] (Table 
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1). Non-physiological substrates D-HTL and γ-thiobutyrolactone are 
hydrolyzed at a rate 4-fold slower and 5.5-fold faster, respectively, 
than L-HTL by the enzyme. Other non-physiological substrates phenyl 
acetate and paraoxon (hydrolyzed 2,800- and 3.3-times faster that rL-
HTL) are non-competitive inhibitors of the HTLase activity suggesting 
that HTL, phenyl acetate, and paraoxon are hydrolyzed at different 
sites of the enzyme [13]. This suggestion is supported by structure/
function studies showing that specific active sites mutations have 
different effects on arylesterase, paraoxonase, and lactonase activities 
of the PON1 protein [32,33]. Other inhibitors of the HTL activity, such 
as isoleucine and penicillamine are also non-competitive, suggesting 
the presence of a distinct amino acid-binding effector site on PON1 
[13]. HTLase and paraoxonase activities are strongly correlated in 
various populations [22,28,31], indicating that the non-physiological 
paraoxonase activity is a good surrogate for the physiological HTLase 
activity of the PON1 protein.

Human PON1 has two major genetic polymorphisms: PON1-M55L 
and PON1-R192Q, which affect PON1 function [34,35], including its 
HTLase activity [22,31]. For example, high HTLase activity is associated 
with PON1-L55 and PON1-R192 alleles, whereas low HTLase activity 
is associated with PON1-M55 and PON1-Q192 alleles [22,31]. Purified 
serum PON1-R192 allozyme has 2.5-fold higher HTLase activity than 
the PON1-Q192 allozyme [36], which explains the association of high 
activity with PON1-R192 allele.  However, several studies have found 
that PON1 phenotype (HTLase or paraoxonase activity) is a predictor 
of cardiovascular disease but the PON1-R192Q or PON1-M55L 
genotypes are not [22,34,35,37-39]. For example, HTLase activity is 
found to be significantly lower in a group of 128 CVD patients with 
angiographically confirmed atherosclerotic lesions, compared to a 
control group of 142 individuals who have no lesions [39]. A negative 
correlation is found between the severity of atherosclerotic lesions and 
HTLase activity in patients. Further, the physiological HTLase activity 
is a more significant predictor of CVD than a non-physiological 
paraoxonase activity [39]. 

In humans, the HTLase activity (but not arylesterase or 
γ-butyrothiolactonase)  of PON1 is a determinant of plasma N-Hcy-
protein levels and protects proteins against N-homocysteinylation in 
vivo, a novel mechanism likely to contribute to atheroprotective roles 
of HDL [18,28]. HTLase activity of PON1 is negatively correlated with 
tHcy [22] and predicts CVD (38). Pon1-/- mice are impaired in their 
ability to hydrolyze HTL and as a result heve elevated levels of plasma 
N-Hcy-protein and   excrete more HTL in the urine compared with 
their Pon1+/+ littermates [29]. Pon1-/- mice are also more sensitive than 
their wild type littermates to neurotoxicity of HTL. Taken together, 
these studies provide the first direct evidence that a specific Hcy 
metabolite, HTL, rather than Hcy itself is neurotoxic in vivo [29], and 
suggest that other functional properties of HDL beyond its ability to 
promote reverse cholesterol transport contribute to its atheroprotective 
function. 

Bleomycin hydrolase
Bleomycin hydrolase (Blmh), is a thiol-dependent cytoplasmic 

aminopeptidase expressed in various organs, including the liver [40].  
Blmh is studied in the context of Hcy toxicity [14,41], cancer therapy 
[42,43], AD [44-47], Huntington disease [48], keratinization disorders 
[49], and protein breakdown [48,50]. The human genetic polymorphism 
BLMH-Ile443Val is associated with an increased risk for AD [45]. In 
mice, deletion of the Blmh gene results in several phenotypes, such 
as neonatal mortality, tail dermatitis [51], brain pathology [52], and 

impairs the presentation of some antigens [53]. 

In addition to an aminopeptidase activity, Blmh has a hydrolase 
activity towards HTL [14,54] (Table 1). Substrate specificity studies 
of purified human Blmh show that the enzyme exhibits absolute 
stereospecicity for L-HTL, the preferred natural substrate [14]. 
Methyl esters of L-Cys and L-Met, but not of other L-amino acids, 
are also hydrolyzed.  However, D-HTL, D-Met methyl ester, 
γ-thiobutyrolactone, L-homoserine lactone are not hydrolyzed by 
Blmh [14].

HTLase activity of Blmh is significantly reduced in brains from 
Alzheimer’s disease patients compared with unaffected brains [41]. 
This finding suggests that diminished functional Blmh activity could 
contribute to the pathology of the disease.

Catabolism of HTL is impaired in Blmh-/- mice. For example, Blmh-

/- mice have elevated brain and kidney HTL, and plasma N-Hcy-protein 
levels compared with wild type Blmh+/+ littermates [54].  Blmh-/- mice 
are significantly more sensitive to HTL toxicity than their wild type 
littermates [54]. 

Biphenyl hydrolase-like protein
Biphenyl hydrolase-like protein (BPHL), also called valacyclovir 

hydrolase, is a mitochondrial protein highly expressed in human 
liver and kidney [55,56]. BPHL hydrolyzes and activates the antiviral 
prodrug esters valacyclovir and valganciclovir, used in the management 
of herpes simplex, herpes zoster (shingles) and herpes B [57]. First 
cloned from breast carcinoma cells, BPHL, a member of the alpha/beta 
hydrolase fold family, is a serine hydrolase distantly related to other 
members of the serine hydrolase family [55,56]. In mice, deletion of 
the Bphl gene results decreased circulating creatinine levels in males, 
suggesting a kidney function defect (http://www.informatics.jax.org/
allele/allgenoviews/MGI:5548556).

First reports showing that human BPHL has an HTLase activity 
were published in 2010-2011 [15,16] and confirmed in 2014 [17]. 
Although BPHL, BLMH, and PON1, hydrolyze HTL, they differ in 
catalytic efficiencies and exhibit distinct specificities towards non-
physiological substrates (Table 1). Catalytic efficiency of BPHL for 
HTL hydrolysis is higher than that of BLMH or PON1,  suggesting a 
significant HTL- detoxifying role for BPHL in vivo, which remains to 

Substrate PON1
activity, %

BLMH  activity, % BPHL
activity, %

L-Hcy-thiolactone
(kcat/Km)

100
(10 M-1s-1)

100
(103 M-1s-1)

100
(7.7x104 M-1s-1)

D-Hcy-thiolactone 24 <1 ND
γ-Thiobutyrolactone 545 <1 <0.001
N-Acetyl-D,L-HTL <1 <1 <0.001
L-Hse-lactone ++++ – +++
L-Met methyl ester <1 ++ 30
L-Cys methyl ester <1 ++ ++
L-Lys methyl ester ND – –
L-Phe ethyl ester 0 ND 16
Nε-Hcy-aminocaproate ND ++++ ND
Val(Nε-Hcy-Lys) ND ++++ ND
HcyLeuAla ND ++++ ND
Bleomycin ND 500 ND
Paraoxon 330 – ND
Phenyl acetate 280,000 – <0.001
Valacyclovir – ND 22

Table 1. Substrate specificities of human HTLases.

http://www.informatics.jax.org/allele/allgenoviews/MGI:5548556
http://www.informatics.jax.org/allele/allgenoviews/MGI:5548556
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be examined in future studies.

HTL clearance by renal excretion
In humans and mice endogenous HTL is also eliminated by urinary 

excretion [58,59]. HTL concentrations in urine vary from 11 nM to 485 
nM and are 100-forld higher than in plasma. Urinary HTL accounts for 
2.5% - 28% of urinary tHcy. Relative renal clearance of HTL is 0.2 – 7.0 
of creatinine clearance, while clearance of tHcy is only about 0.001 – 
0.003 [58]. Efficient urinary elimination of HTL is typical for the waste 
or toxic products of normal human metabolism.

Calculations based on a normal glomerular filtration rate of 180 L/
day and a free plasma Hcy concentrations of 3 μM indicate that 99% 
of filtered tHcy is reabsorbed [60] in humans. A similar calculation for 
HTL (0.12 - 2.4 nM in plasma and 286 - 415 nmol/day eliminated in 
urine) indicates that only 0.4 - 3.8% is reabsorbed and >95% of filtered 
HTL was excreted [58]. 

In mice fed with a normal chow diet, urinary HTL is 140 nM [59], 
similar to urinary HTL value in humans [58]. However, in mice with 
dietary (high-Met) or genetic (Cbs-/-) hyperhomocysteinemia urinary 
HTL increases 25-fold [59] or >50-fold [61]. The distributions of HTL 
between plasma and urine in mice fed a normal diet and humans are 
similar: HTL accumulates to much higher levels in urine than in plasma 
(the ratio urinary/plasma HTL is 37 in mice [59] and 100 in humans 
[58]). This shows that urinary clearances of HTL in mice and humans 
are similar, and that in mice, similar to humans [58], >95% of the 
filtered HTL is excreted with urine. Furthermore, significantly higher 
urinary/plasma HTL ratios are found in mice fed with a high-Met diet 
than in the animals fed a normal diet, which suggests that efficiency of  
urinary HTL clearance increases in hyperhomocysteinemia. 

Renal excretion removes a large fraction of HTL [58] that would 
otherwise cause protein damage by N-homocysteinylation. Thus, 
urinary excretion is an important route of HTL elimination and intact 
renal function is essential for HTL detoxification in humans and mice.

Implications
Given the role of PON1, BLMH, and BPHL in the detoxification 

of Hcy-thiolactone, available evidence supports the possibility that 
elevated HTLase activity might protect against CVD in the general 
population. Dietary, pharmacological, or genetic interventions to 
increase or preserve HTLase activity might provide basis for CVD 
prevention or treatment. Such strategies are feasible with PON1 
as shown by studies in which dietary consumption of red wine or 
its flavonoids quercetin and catechinwas shown to preserve serum 
PON1 activity in ApoE-/- mice [62]. Pomegranate juice, which is 
rich in flavonoids, causes significant elevations in PON1 activity in 
humans and reduces the size of atherosclerotic lesions in ApoE-/- mice 
[63]. Further, PON1 overexpression in mice inhibits atherosclerosis 
development [64]. Identification of determinants of PON1, BLMH, 
and BPHL activity and subsequent human intervention studies are 
needed to examine these potential therapeutic implications. 
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