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Introduction

Black/African Americans (AAs) experience inordinate COVID-19
mortality in major cities across the United States (US) compared to
other racial ethnic groups [1]. In Chicago for example, although
AAs comprise just 30% of the city population, they bear the burden
of deaths at 70%. While this striking demographic imbalance is often
ascribed to inequalities in health care and insurance coverage, and other
social determinants (structural racism, socio-economic status), the
biological implications that may also play a role remain incompletely
understood. To explain this health disparity, we hypothesize that the
current serologic and molecular test kits for SARS-CoV-2 do not
account for adaptive viral mutations occurring in a host sector which
is demographically distinguishable. This rationale is based on evidence
that specialized mutations could in theory impinge on antibody and
viral RNA testing consistency in AAs so as to systematically reduce
opportunities for prompt clinical interventions. Hence, it is paramount
to investigate whether the current COVID test kits are molecularly
optimal to confidently detect SARS-CoV-2 in the AA demographic.

We base our hypothesis on the following: for AAs, reliability of
present FDA-approved COVID-19 tests may be ineffective due to 1)
the high susceptibility of SARS-CoV-2 to error-prone RNA-dependent
RNA- polymerases (RNA polymerase) of RNA viruses, yielding
mutation reservoirs on which AA demographic selective pressures may
act, and from 2) the vulnerability of serologic and viral genome tests
to consequent probe-sequence mismatch against the heterogeneous
targets queried, increasing false negatives. Relatedly, RNA viruses
including coronavirus [2-5], HIV-1 [6-10] etc., via myriad mutations,
and over many infection cycles, generate sequentially diverging
“quasispecies”, stemming from this faulty proofreading by the viral
polymerase [11,12]. Thus, each AA infectee’s full array of variant
virus would be structurally and temporally unrepeatable [13] but
may consistently feature a number of demographically specific virion
types. We surmise that in the context of host pressures, underlying
inflammatory disease phenotypes (e.g., hypertension, type 2 diabetes)
could potentially result in increased error-prone RNA polymerase and
viral regulatory gene changes due to elevated virus replicability; this
could increase the pool of quasispecies. These sequential divergences
could not only produce genetically favored variants (i.e., more
pathogenic species, though not the subject of our discussion here), but
also escape detection by molecular and serologic screens. Importantly,
the production of the pathophysiologically diverse quasispecies
contributes to many biomedically-relevant phenomenon, including
immune system evasion, vaccine and antiviral inefficacies, failures
in virulence, cell tropism and host range restrictions [14-19]. These
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factors lend urgency to molecular optimization of COVID-19 tests
to minimize polymorphism-associated false negative diagnoses in
minority populations.

Molecular test

The FDA approved molecular test for SARS-CoV-2 infection
which employs reverse transcription (RT) followed by polymerase
chain reaction (PCR) is based on the amplification of a selected
region of the virus nucleocapsid (N) gene using oligonucleotide
primers, whose extension reduces probes conjugated with a reporter
dye. In the process, the probe, annealed to a specific target sequence
located between the forward and reverse primers, will be degraded
in the extension phase of the PCR cycle by the 5 nuclease activity
of Taq polymerase, which causes the reporter dye to separate from
the quencher dye, generating a fluorescence signal. As the cycling
progresses, the reporter dye molecules are increasingly cleaved from
their respective probes, raising fluorescence intensity proportional to
virus infection loads (i.e., more viral RNA). Fluorescence intensity is
monitored at each PCR cycle by the Applied Biosystems 7500 Fast Dx
Real-Time PCR System with SDS version 1.4 software (coronavirus
RT-PCR kits - CDC2019-novel coronavirus-FDA). The main concern
around use of qPCR-based sensitivity and accuracy, both of which
can be affected by mutations or polymorphisms in the primers/probe
binding sites. In the context of the SARS- CoV-2 assay, what would
happen if the genomic RNA derived from the infected AAs does not
perfectly match the primer/probe sequences in the RT-PCR kit due to
viral gene mutations? Moreover, mismatch between the 3° end of the
primer -- where extension initiates -- and the target viral sequence will
be especially fatal to amplification, greatly diminishing fluorescence
and precluding a positive readout of the infection. Acquired RNA
mutations in either primer and/or probe binding sites will affect the
accuracy and sensitivity of the diagnostic test; if these mutations are
selectively exacerbated in the AA population, then sensitivity of the
assay may be compromised and detection of SARS-CoV-2 infection
may be missed. This may (1) increase the opportunity for further
spread of the virus and (2) negatively affect disease course by delaying
treatment.
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Serologic test

The serologic test using antibody/antigen suffers an equivalent
vulnerability due to the short length of the epitope, where mutations
in the viral genomic sequences encoding the target epitope could
greatly affect the specificity and sensitivity of serologic (or antibody)
test. Serologic tests are designed to detect antibodies that are in serum
or plasma components of blood, that are in response to SARS-CoV-2
infection, and that interact with purified SARS-CoV-2 spike (S) protein
as antigen (designed by the Vaccine Research Center at the National
Institutes of Health). As with the PCR primers, the amino acid length
of the epitope to elicit antibody against SARS-CoV-2 is short, making
the test vulnerable to blunted resolution by single nucleotide mismatch.
Specifically, the length of the epitope presented on the MHC class I is
typically 8 to 11 amino acids [20-23], corresponding to the 24 to 33
nucleotides (or 8 to 11 codons), and thus a mutation in one out of 24 to
33 nucleotides, if non-synonymous, would appreciably reduce affinity
between an AA’s antibody raised against a distinctive epitope and the
antigen probe based on the non-AA span. The identical failure in outcome
could result if the amino acid sequence motif in antigen recognizing
antibody were otherwise sufficiently changed by genetic mutation.

Concluding remarks

Taking into consideration these potential flaws in diagnostic
test design, given the inherent mutational events of SARS-CoV-2, it
is imperative to characterize SARS-CoV-2 quasispecies of AAs and
examine whether molecular motifs essential for RT-PCR and epitope
probes differ at noticeable rates between non-AAs and AAs, ultimately
improving the diagnostic accuracy and sensitivity of the serologic
and molecular assays. Moreover, meaningful polymorphisms may be
incorporated as subpopulation markers to augment subject inclusivity
and nationwide diagnostic confidence for the molecular tests.
Taken together, investigation of racially divergent viral quasispecies
distributions in SARS-CoV-2 pathobiology studies will rectify
COVID-19 testing flaws that are believed to aggravate pandemic
mortality among AAs (Figure 1).
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Figure 1. Representation of the Hypothetical Impact of Comorbidity on SARS-CoV-2
Quasispecies Generation and Testing. Wild type SARS-CoV-2 (the most common form,
represented as a yellow virion), serves as the reference RNA sequence for development
of a diagnostic RT-PCR assay. However, it is clear that SARS-CoV-2’s RNA polymerase
is error prone and is capable of generating quasispecies upon replication (shown as grey
virions with various RNA colors). Upon mutation in PCR-targeted sequence(s), the assay’s
sensitivity and accuracy of diagnosis is compromised. Here, we propose the possibility
that SARS-CoV-2 may exhibit a higher RNA mutation/error rate in response to comorbid
conditions and their resultant inflammatory phenotypes. If so, it clearly follows that
vulnerable, at-risk populations such as African Americans who endure a heavier burden
of comorbid disease (e.g., hypertension) would be adversely affected by the resulting false
negative rates. This could be a cryptic contributor to the observed disparity in COVID-19
mortality rates in such populations
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