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Abstract
For the development of infection-resistant artificial bone, a robust animal model that closely mimics clinical infection is necessary. Therefore, we established a rat 
model of cranial infection. After creating a bone defect in the parietal cranium of rats, either collagen sponge honeycomb or sterile cotton gauze was inserted into 
the defect, and wounds were then inoculated with Staphylococcus aureus. This method effectively resulted in cranial infection in a manner dependent on the inserted 
sponge/gauze. In conclusion, we believe this model will be useful as a cranial infection model and will enable studies of materials used in cranioplasty for their 
infection potential in a state befitting that of a clinical setting.
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Introduction
Plastic surgeons often encounter situations in which cranioplasty 

involving artificial materials is performed in patients with cranial 
defects following neurosurgery or external injury. Recent developments 
in medical engineering have introduced various types of artificial 
bone to the market [1-10], and these materials are becoming more 
frequently and widely used. However, among serious complications 
is infection. Occurrence of infection deteriorates the prognosis as 
artificial implantsoften support bacterial growth,compromising 
the efficacy of the antibiotic treatment; in fact, some cases require 
extraction of the artificial bone. If infected artificial materials are not 
removed, the infection may spread to a wider area and cause intractable 
skin ulceration, requiring not only removal of the artificial bone but 
also reconstruction of the damaged skin and leading to a protracted 
hospitalization [11,12]. To expedite the development of infection-
resistant artificial bone, a robust animal model that closely mimics 
clinical infection is necessary [13]. Infection models of crush wounds 
[14], burn wounds [15], and ulceration caused by the insertion of 
foreign materials such as suture threads or sand have been developed 
[16], but, to our knowledge, there is currently no established cranial 
infection model. Small animals such as rats are generally considered 
to possess a strong resistance to infection, and it has been considered 
highly challenging to maintain infection in these animal models [17]. 
In this study, we investigated the development of a rat model of cranial 
infection that can be maintained in an infected state.

Materials and methods
Experimental methods

Thirty Sprague–Dawley adult male rats (SD rats; obtained from 
Japan SLC, Inc., Shizuoka, Japan), aged 10–12 weeks and weighing 
390–432 g, were used as the experimental model. First, rats were 
anesthetized by intraperitoneal administration of 0.4 ml pentobarbital. 
The top of the head was shaved to expose the skin which was then 

disinfected with ethanol. A 2-cm sagittal skin incision was made 
through the midline of the head using a #15 scalpel, and the parietal 
skull under the periosteum was exposed. Next, a defect in the full 
thickness of the bone, measuring 5 mm in diameter, was created on 
each side while avoiding the saggital suture (Figure 1).

Two types of foreign materials were evaluated for use in the 
model; either a collagen sponge honeycomb (AteloCell®; Koken Co., 
Ltd., Tokyo, Japan) or sterile cotton gauze was inserted into the bone 
defects. No foreign material was used in the control group. To create 
infection, 15-CFU Staphylococcus aureus (S. aureus, 30 CFU/cell; 
Easy QA Ball®; Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) were 
inoculated into each of the bone defects, while a control group was not 
inoculated with the bacteria. Wounds were then sutured and closed 
with 4-0 nylon thread; wounds were not drained via methods such as 
external ointment or gauze covering.

Based on inoculation of bacteria and the insertion of foreign 
materials, rats were divided into six groups as follows. 

Group 1: no materials & no S. aureus, 

Group 2: no materials & S. aureus, 

Group 3: sponge & no S. aureus, 

Group 4: sponge & S. aureus, 

Group 5: gauze & no S. aureus, 
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Group 6: gauze & S. aureus. 

Thus, there were a total of six groups with six bone defects each; 
three bone defects were examined 3 days after surgery, whereas the 
other three were examined 7 days after for each group.

All animal experiments were performed in accordance with 
protocols approved by the experimental animal committee at Fujita 
Health University

Bacterial analysis using gram staining

At 3 and 7 days after surgery, rats were anesthetized via 
intraperitoneal administration of 0.4 ml pentobarbital. The calvarias 
were dissected, and the granulation status of the bone defects, including 
the presence of exudate and abscess formation, was visually evaluated. 
Granulation tissues were collected from the cranial defects of the rats 
in each group and fixed in 4% PFA (paraformaldehyde) before being 
embedded in paraffin. The specimens were sectioned in the coronal 
plane at 5-μm thickness and Gram-stained for observation under a 
conventional qualitative, bright-field light microscope, where they 
were assessed for the presence of Gram-positive bacteria.

Evaluation of increased bacterial counts using bacterial 
culture

At 3 and 7 days after surgery, 2-mm squares of granulation tissue 
were collected from the centers of the bone defects from rats in each 
group. They were then mashed and dissolved in 1 ml physiological 
saline solution; 0.1 ml solution was subsequently inoculated and 
smeared on to mannitol salt agar with egg yolk. Each agar plate was 
then placed in an incubator (37°C, 5% CO2) for 24 hr, and the number 
of colonies was then counted.

Statistical analysis

Statistical analysis was performed using the Wilcoxon signed-
rank test. All calculations were performed using SPSS version 17 for 
Windows (SPSS Inc., Chicago, IL, USA), and p values <0.05 were 
considered statistically significant.

Results
Macroscopic appearance

A little abnormal granulomatous tissue was observed in Groups 3 
and 5. There was significant leachate and both thick and weak abnormal 

granulation tissue observed in all wounds inoculated with S. aureus 
(Groups 2, 4, and 6). There was no significant difference in appearance 
by comparing the specimen on days 3 and 7. 

Histology

In the histologic analysis of wounds 3 days after surgery, no Gram-
positive bacteria were detected in the tissues from Groups 1, 3, and 
5, which were the groups not infected with S. aureus (Figure 2). As 
expected, disseminated Gram-positive bacteria were sporadically 
detected in tissues from Groups 2, 4, and 6. 

Seven days after surgery, no Gram-positive bacteria were detected 
in the tissues from any of the groups of uninoculated rats (Groups 1, 3, 
and 5). In addition, Gram-positive bacterial colonies were not observed 
in Group 2 (Figure 3). This was different from the results obtained 3 
days after surgery. On the other hand, Gram-positive bacteria were 
observed in the tissues from Groups 4 and 6, seven days after surgery. 
When compared with Group2 that showed no colony,  this result 
demonstrates the importance of the foreign materials for the bacterial 
growth.

Bacterial counts

The number of Gram-positive bacterial colonies was counted from 
specimens after 24 hour of bacterial culture. In samples from 3 days 
after surgery, no colonies were counted in Groups 1, 3, and 5. Among 
the bacteria inoculated into Groups 2, 4, and 6, the mean measured 
colony counts were 210 ± 46.3, 747 ± 85.2, and 946 ± 109.5, respectively. 
There were significant differences in colony counts between Groups 1 
and 2, Groups 1 and 4, and Groups 1 and 6 (p<0.01). Furthermore, 
there were significant differences in colony counts between Groups 2 

Figure 1. Creation of the bone defects at the cranium of the experimental model.
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Figure 2. Histological macroscopic appearance 3 days after surgery (Gram staining). No 
Gram-positive bacteria were detected in Groups 1, 3, and 5. Disseminated Gram-positive 
bacteria were instead sporadically detected in samples from Groups 2, 4, and 6.
a. Group 1: no materials & no S. aureus, b. Group 2: no materials & S. aureus, c. Group 3: 
sponge & no S. aureus, d. Group 4: sponge & S. aureus, e. Group 5: gauze & no S. aureus, 
f. Group 6: gauze & S. aureus.
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and 4 and between Groups 2 and 6 (p<0.01; Figure 4).

The results with the tissues obtained seven days after surgery showed 
a trend similar to that with the tissues at three days after surgery. The 
mean measured colony counts of samples 7 days after surgery, among 
Groups 1, 3, and 5 were 0 for each group. The mean measured colony 
counts for Groups 2, 4, and 6 were 12 ± 8.2, 5147 ± 366.7, and 5229 ± 

690.9, respectively. There were significant differences in colony counts 
between Groups 2 and 4 and between Groups 2 and 6 (p<0.01) at 3 days 
after surgery, signifying the dependency of the bacterial growth on the 
foreign materials. However, there was no significant difference between 
Groups 1 and 2 (p = 0.52; Figure 5). 

Discussion
Major skull defects can present as most disturbing deformities. 

Cranioplasty can restore cerebral protection and improve craniofacial 
esthetics. When autogenous bone is not available or when its use is 
inappropriate, alloplastic materials are considered the next best 
option [6]. Nevertheless, none of the materials currently used to 
reconstruct skull defects are completely satisfactory. Hydroxyapatite 
is a biocompatible and osteoconductive material that lacks significant 
toxic or immunogenic properties; this would seem an ideal substrate 
for the repair of cranial defects [18].

However, infections present a major complication of cranioplasty 
procedures and in many cases of post-surgical infection, removal of 
the implant material becomes a necessity [19]. Once bacteria attach 
to the implant surface, they can cause localized inflammation and 
progressively damage neighboring tissues [20]. Furthermore, this may 
result in replacement failure of the implant material, which can lead to 
a fatal outcome. We have used artificial bone for cranial defects [21,22], 
and we now regard the development of artificial bone, which possesses 
anti-infective and compressive strengths, as a really important matter 
because of the aforementioned reasons.

Before clinical application of such procedures to confirm the 
efficacy of the new treatment, animal studies need to be conducted. 
Rats have a large and thick enough skull to create bone defects and 
are relatively frequently used for experiments assessing calvarial 
defects [23]. Therefore, we considered developing a cranium-infected 
rat model for grafting of an artificial bone. However, it is difficult to 
develop infection models in rodents, and some studies have created skin 
infection models using foreign materials [14,17]. We hypothesized that 
it would be possible to grow pathogenic microbes and induce a tissue 
reaction in response to using foreign materials in cranial defects, after 
reading these reports. The collagen sponge (AteloCell®) used as foreign 
material was a three-dimensional, honeycomb-shaped, and pepsin-
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Figure 3. Histological macroscopic appearance 7 days after surgery (Gram staining). No 
Gram-positive bacteria were detected in groups 1, 2, 3, and 5. The results are markedly 
different in Group 2 compared with those on 3 days. On the other hand, a lot of Gram-
positive bacteria were detected in samples from Groups 4 and 6.
a. Group 1: no materials & no S. aureus, b. Group 2: no materials & S. aureus, c. Group 3: 
sponge & no S. aureus,  d. Group 4: sponge & S. aureus, e. Group 5: gauze & no S. aureus, 
f. Group 6: gauze & S. aureus.

Figure 4. Bacterial colony counts in each group 3 days after surgery.
Group 1: no materials & no S. aureus, Group 2: no materials & S. aureus, Group 3: sponge 
& no S. aureus, Group 4: sponge & S. aureus, Group 5: gauze & no S. aureus, Group 6: 
gauze & S. aureus.

Figure 5. Bacterial colony counts in each group 7 days after surgery.
Group 1: no materials & no S. aureus, Group 2: no materials & S. aureus, Group 3: sponge 
& no S. aureus, Group 4: sponge & S. aureus, Group 5: gauze & no S. aureus, Group 6: 
gauze & S. aureus.
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treated material. It has biodegradable properties and is frequently 
used in various tissue engineering applications [24,25]. We chose this 
material because the composition was similar to biological tissue. In 
addition, we used a cotton gauze as foreign material, to conform to the 
experiment reported by Tachi et al. [16]. They developed a model of 
wound infection in which persistence of infection was achieved for 9 
days following ulceration due to the application of gauze to the base of 
a full-thickness wound.

In the present study, we used S. aureus as a pathogen for cranial 
infection. This bacterium is commonly found on human fingers, 
nasal vestibules, and the pharynx. It is also present on the skin and 
is considered to be a potential inflammatory bacterium in cranial 
artificial bone infections. Therefore, we used S. aureus to inoculate the 
cranial defect wounds in this experiment.

We used the bacteria which we gathered from inpatients for the 
beginning of this experiment. However, there was various bacteria got 
mixed and it was difficult to control the certain number of the bacteria. 
Moreover, there was possibility that it might not contain viable cells 
and result in ‘‘zero counts” when used. Therefore we used the Easy QA 
Ball® (BioBall®; as a following now) because of the stabilization and 
recovery of viable cells, the accurate number of bacteria. In addition, it 
requires no preparation or pre-incubation, and it can be added directly 
to media or matrix samples [21]. We got to know through the process, 
it was difficult to count and compare the number of too many bacterial 
colonies because the bone defect was very small, so that we determined 
15CFU of S. aureus was appropriate to inoculate. 

Our study had certain limitations. We only examined histological 
granulation tissue of calvarial bone defects. It was difficult to 
manufacture samples of rat calvarial bone, while not injuring the dura 
mater and brain. However, we think that it is necessary to use a method, 
which fully explores the intracranial changes because the clinician is 
likely to be interested in the connections in this area. In addition, we 
did not monitor the duration of the infection. The autogenous bone 
causes a reaction similar to bacterial “melting,” but we do not know 
how the artificial bone changes bacteria. Therefore, it is necessary to 
control the period of infection when investigating the alteration of 
artificial bone.

In conclusion, we believe this model will be useful as a cranial 
infection model and will enable the study of artificial bone used in 
cranioplasty and their potential for infection in a state more similar to 
that of a clinical setting.
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