

Research Article**ISSN: 2058-5314**

The influence of microgrooved surfaces on the behavior and cellular function of osteoblasts

Qirong Li, Yuchen Guo and Yongyue Wang*

West China School of Stomatology Sichuan University, oral implantology, Chengdu, Sichuan 610041, China

Abstract

Since 1945 Weiss Paul described the phenomenon 'contact guidance' which means the cell elongates along the direction of the groove and migrates guided by the grooves. Cell could sense the surface topography where it lies and react to these surface cues. Many researches have devoted themselves to reveal the potential mechanisms. The interaction is mainly mediated by the cytoskeleton, the focal adhesions and the extracellular matrix (ECM). But how would the groove dimensions affect the cellular behavior is still obscure. Nowadays, micro fabrication techniques such as electron beam lithography have been applied to the production of micro-textured surfaces. They are relatively fast and cheap, and could fabricate microgrooves of reasonable size. Thus, they have been widely utilized to generate (micro-) nano-topographical surfaces or scaffolds for in vitro cell research. According to the report of P. CLARK, the response of cells to micro-grooved surfaces is cell type-dependent, so the focus of this review is on the osteoblast(s) reaction to micro-grooved surfaces.

Introduction

A century ago, in 1911 Harrison depicted that cells cultured on spider's webs grew along the fibers [1]. Later on, in 1945 Weiss P initially named the phenomenon 'contact guidance': a tendency of cells to align, grow, or migrate along the grooves [2]. Cell can 'sense' the surface topography and then take reaction to these surface cues. The interaction between substrates and cells is achieved through the effort of the cytoskeleton, the extracellular matrix (ECM) [3-5] and the focal adhesions [6].

In terms of the defined (micro-) nano-topographical surface, they are usually produced by the micromachining technology: lithographic patterning (photolithography, electron beam lithography, colloidal lithography), galvanoformung abformung process LIGA, focused ion beam-chemical vapor deposition FIB-CVD and so on. Some of these techniques such as electron beam lithography (EBL) have been developed for creating well-defined patterns with feature sizes <10 nm [7]. Recent years, femtosecond laser patterning has obtained a position in the microgrooves' machining [8,9]. These techniques promoted the development of biomaterials and tissue engineering greatly.

As the response of cells to micro-grooved surfaces is cell type-dependent [10], the react of osteoblasts to the micro-machined surface might be different from other cell types. This review is based on the gathered information about the defined microgrooves, ranging from nanometers to microns, role on the osteoblasts, aiming at finding out the interaction between these ultrafine arrays and the bone-forming cells.

Micro/Nanofabrication technologies

A variety of methods such as Femtosecond laser microtexturing can be applied to the fabrication of microtextured surface. These nano/micro patterning techniques were early used in the semiconductor and microelectronics industries [11], later they were increasingly applied in biology, medicine, and biomedical engineering fields [12]. Researchers

[13,14] use these techniques to manufacture materials, attempting to get a value that is optimal for the growth of cells. These technologies both have their adaptations as well as limitations, also they have got developments. Hence it is hard to define the best tech in this field [15].

Microgrooved surface influences cellular behavior

Cell adhesive to the grafting materials, more importantly, they are in reciprocity with them. Different surface materials and topographies may induce distinct cell morphology, proliferation, and gene expression [16]. Cells can "sense" substrate elasticity [17,18] as long as its surface patterns in the scope of 10 nm to 100 nm [19,20].

Different dimensions are thought to play varied roles in cellular behavior [10,21]. The average size of the osteoblasts is 20-30 μ m. When the dimensions of grooves/ridges are reduced to the sizes of the cells and less, topographic effects on cell orientation become more prominent [22]. As will be discussed below, a majority of results focused on groove width of the micro-or-nanoscaled surface, some reports show that ridge width is more important in conducting the cellular behavior, while maybe the groove depth is the leading factor inducing cellular activities.

Groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and that groove width is vital in determining cellular response [23]. Certain groove width guides the cell to align along the direction [8,9,24,25]. The change of the

Correspondence to: Yongyue Wang, DDS, Ph.D, Professor, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Renmin Nan Road Chengdu, Sichuan 610041, China, Tel:86-28-85503579; Fax: 86-28-85582167; E-mail: westchinawangyy@163.com

Key words: osteoblast(s), nanotechnology, surface chemistry /properties, cell biology, cell differentiation, cell-matrix interactions

Received: August 29, 2016; **Accepted:** September 19, 2016; **Published:** September 22, 2016

width affects cellular shape [26], attachment [27], cellular proliferation [28] as well as bone forming ability [25,26]. From these opinions and Table 1 and 2, we can infer that substrates with the microgroove width of 1-5 μ m, particularly 2 μ m seems to be optimal for the biological behavior of osteoblasts. On 2 μ m-wide-grooves the cellular adhesion [29], proliferation [28], osteogenic differentiation [28,30] as well as calcification [28]. Also, these nanophase material increased adhesions of osteoblasts compared with the conventional materials [31]. Depicted in table 2, almost all of these dimensions guide the cells to align along the long axis of micropatterns. Some nano-dimensions display an osteogenic influencing function [25,30,32].

Those who focused on the effect of ridge part had some limited findings. Alexey Klymov *et al.* designed the substrates with ridge to groove ratios of 1:1, 1:3 and 3:1. He demonstrated that nano-grooved patterns with the ridge to groove ratio of 1:3 showed cell repelling, meanwhile grooves with the ridge to groove ratio of 3:1 partially showed cell attraction during cellular selective migration [33]. Apart from that the ridge width clearly enhanced differentiation of MSCs towards specific lineages [30]. Tests on other kinds of cells, say fibroblasts, found that ridge width is the main parameter affecting cell alignment (alignment being inversely proportional to ridge width) [34].

Actually there is no defined item about the influence of groove depth on the osteoblast. From the information Azeem A reported, 306nm and 2046nm promoted osteoblasts alignment parallel to underlined topography. Besides this size showed its osteogenesis ability [32]. Kenichi Matsuzaka observed that on a 0.5 μ m deep and 10 μ m wide grooved surface, the cell descends into the groove, on a 1.5 μ m deep and 1 μ m wide grooved surface, cells attach to the ridges only. Nowhere,

differences were observed between specimens with different groove depths. Instead Kenichi Matsuzaka attributed this phenomenon to the width of the ridge merely [27].

In vivo studies on effect of the surface micromachining to the osseointegration also take for the positive side. The laser micromachining technology enhances bone [24] and soft-tissue integration and controls the local microstructural geometry of attached bone [35]. The organized pattern of the microgrooved surfaces is capable of resulting in transverse collagen fiber microenvironment reaction to the load, being positive to promote and to maintain the bone remodeling; in addition, blood vessels and bone cells are able to penetrate microgrooved surfaces [36]. What's more, micromachined implants enhances primary and secondary implant stability, preserves crestal bone levels [36,37].

Conclusions and outlook

With the acceptance of 'contact guidance' theory, many defined patterns were made by various micro/nano technologies, prompting the study of different dimensions to the cellular behavior. The limited collected data in the table 1 and 2 showed that the groove width is the most influencing factor affecting the osteoblasts. On the micropatterned substrates, osteoblasts adhere and elongate along the long axis of the microgrooves. Improper width of microgrooves may lead to adhesion down growth. On certain groove width cell density, proliferation and osteogenic ability show an improvement. The differentiation also can be affected by the nanotopography. However, the reports based on the virtues of the ridge width and the depth of the array still needs further exploration. Moreover, we can do a further step research on the effect

Table 1. The influence of microscale microgrooves on osteoblasts' function.

References	Cell and Substrate type	Groov width(μ m)	Ridge width (μ m)	Groove Depth (μ m)	Results
Delgado-Ruiz <i>et al.</i> 2015) [9]	hFOB, zirconia	30	70	—	LSA, density and cellular activity increase
(Matsuzaka <i>et al.</i> 2003) [27]	RBM cells, polystyrene	1, 2, 5, 10	1, 2, 5, 10	0.5, 1,1.5	smooth and grooves >5 μ m cells extensions close to substrates grooves 2 μ m were bridged
(Puckett <i>et al.</i> 2008) [26]	human osteobalsts, titanium	80,48,22	45, 35 30	—	Attachment gradually decrease, cellular function increase, cellular shape change
(Biggs <i>et al.</i> 2009) [39]	HOB, PMMA	10,100	10,100	300 nm	10 μ m focal adhesions and osteospecific lineage decrease adipospecific genes increased 100 μ m cellular adhesion increase
(Ismail <i>et al.</i> 2007) [29]	MG63, silicon	2, 4, 8,10	1.5-2	cell viability 8, 10 μ m grooves increase	smaller groove sizes smooth one's better cell adhesion
(Abagnale <i>et al.</i> 2015) [30]	MSCs, Polyimide	2,3,5,10,15	2,3,5,10,15	15 down to sub-micrometer	1.5 μ m ridges increased, adipogenic differentiation,2 μ m enhanced osteogenic differentiation
(Biggs <i>et al.</i> 2008) [23]	HOBs, Silicon	10, 25, 100	10, 25,100	330nm	planar adhesion more,100 μ m increased osteospecific function, 25 μ m reduction SMA increase FX formation,10 μ m reduced, adhesion and induced an interplay of up- a and downregulation of gene expression
(Taniguchi <i>et al.</i> 2015) [28]	MC3T3-E1, zirconia, polycrystal	2 μ m	—	—	proliferation was significantly greater, The Runx2 mRNA level increased time dependently, calcification and ALP activity and osteocalcin mRNA levels were higher
(Lu and Leng 2009) [21]	osteoblast, myoblast, silicon	8, 24	—	2, 4, 10	8 μ m width strongly affect both osteoblasts and myoblasts 24 μ m strongly affect myoblasts only
(Lu and Leng 2003) [40]	osteoblast, myoblast, silicon	8, 24	—	2, 4, 10	8 μ m width strongly affect both osteoblasts and myoblasts, 24 μ m strongly affect myoblasts only
(Lu and Leng 2003) [40]	SaOS-2, Ti and HA	4, 8, 16, 24, 30, 38	—	2, 4, 10	No difference in orientation angle between HA and Ti microgrooves
(Koo <i>et al.</i> 2014) [41]	human primary cells, titanium	15-, 30-, 60-	—	3.5-,10-	lower levels of type I collagen α 1 gene expression at day 14, extremely increase in osteopontin gene expression at days 21 and 28
(Hamilton and Brunette 2007) [42]	Osteoblast cell, epoxy-resin	Pitch: 30-175	5-175	—	Total tyrosine phosphorylation increased Src levels decrease, but FAK and ERK 1/2 phosphorylation were highest, Inhibition of Src phosphorylation with PP2 inhibited FAK and ERK 1/2 phosphorylation
(Fransiska <i>et al.</i> 2013) [43]	ROS, silicon	from 1 to 20	—	—	width less than 10 μ m induced the alignment of osteoblasts, increase osteogenic proteins

Table 2. The influence of nanoscale microgrooves on osteoblasts' function.

References	Cell and Substrate type	Groov width(nm)	Ridge width (nm)	Groove Depth (nm)	Results
(Lamers <i>et al.</i> 2010) [25]	rats bone marrow stromal cells, silicon	down to 75	—	down to 33	minimal align dimensions' width:75nm nanogroove-to-ridge ratios of 1:1, 1:3 and 3:1 depth:33nm. minimal mineralization width: 50nm, depth:17nm, osteoblast- specific gene expression increased
(Yim <i>et al.</i> 2007) [44]	hMSCs, Poly(dimethylsiloxane)	350,700	—	350	Upregulation of neuronal markers— MAP2 and GFAP
(Yang <i>et al.</i> 2009) [45]	MG-63, Silicon	90,150,250,340,500	90,150,250,340,500	—	elongated and aligned along the direction, so does cell nucleie
(Abagnale <i>et al.</i> 2015) [30]	MSCs, Polyimide	pitch of 650	200	—	increased differentiation towards both osteogenic and adipogenic lineages
(Azeem <i>et al.</i> 2015) [32]	Primary human osteoblasts polystyrene	~1860	~2220	~35, 306,2046	~306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro In vivo showed osteogenic ability
(Lenhert <i>et al.</i> 2005) [46]	Primary osteoblasts, polystyrene	periodicity of 500	50, 150	—	align, elongate and migrate parallel to the grooves
(Lamers <i>et al.</i> 2012) [47]	old male Wistar WU rats Osteoblast-like cells, silicon	periods 1000, 300,150	32-150	—	Cells aligned down to 300 nm pitch In vivo 150 nm pitch grooves has the lowest density of multinucleated cells
(Prodanov <i>et al.</i> 2013) [48]	MC3T3-E1, silicon	200	—	50	PFF (pulsatile fluid flow) did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation
(Prodanov <i>et al.</i> 2010) [49]	Rat MSCs, Silicone rubber	300 (600 pitch)	1 μ m(pitch 2 μ m)	~150, 500	perpendicular the substrates when parallel stretch to the nanotexture greater than 3% applied
(Klymov <i>et al.</i> 2015) [33]	Rat MSCs, Silicon, polystyrene	10 – 1000 ridge to groove ratios of 1:1, 1:3 and 3:1	—	—	All sizes of squares showed strong cell-repelling capacity. 3:1 partially showed cell attraction

of the wettability and inclination of ridge. Soluble biochemical cues, dynamic control and regulation of topographical features, as well as cell co-culture systems, have all been declared to act in synergy with physical cues in regulating stem cell fate [38]. When we design a test, multi-factors should be taken into consideration. In conclusion, critical dimensions do play a part in regulating cellular behavior. However, it is a pity that we have not completely revealed the mystery of micro-nanotopographical on the osteoblasts. In addition, which dimension of microarrays is optimal for the adhesion, proliferation, differentiation, and osteogenesis is still under research. We can use the obtained data as a guide and reference for the study in the future. Besides, these results could be helpful in the design and fabrication of implants and biomaterials.

Acknowledgement

- The authors acknowledge funding from the Chengdu science and technology huimin engineering projects. China. 0040305301462. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

References

- Harrison RG (1911) On the stereotropism of embryonic cells. *Science* 34: 279-281. [\[Crossref\]](#)
- Weiss P (1945) Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. *J Exp Zoology* 100: 353-386.
- Rovensky YA, Slavnaja IL, Vasiliev JM (1971) Behaviour of fibroblast-like cells on grooved surfaces. *Exp Cell Res* 65: 193-201. [\[Crossref\]](#)
- Meyle J, Wolburg H, von Recum AF (1993) Surface micromorphology and cellular interactions. *J Biomater Appl* 7: 362-374. [\[Crossref\]](#)
- Von Recum A, Van Kooten T (1995) The influence of micro-topography on cellular response and the implications for silicone implants. *J Biomater Sci* 7: 181-198. [\[Crossref\]](#)
- Biggs MJP, Richards RG, Dalby MJ (2010) Nanotopographical modification: a regulator of cellular function through focal adhesions. *Nanomedicine* 6: 619-633. [\[Crossref\]](#)
- Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, et al. (2000) Electron beam lithography: resolution limits and applications. *Appl Surf Sci* 164: 111-117.
- Delgado-Ruiz R, Calvo-Guirado J, Moreno P, Guardia J, Gomez-Moreno G, et al. (2011) Femtosecond laser microstructuring of zirconia dental implants. *J Biomed Materials Res Part B: Applied Biomaterials* 96: 91-100. [\[Crossref\]](#)
- Delgado-Ruiz R, Gomez Moreno AG, Aguilar-Salvatierra A, Markovic A, Mate-Sánchez JE, et al. (2015) Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study. *Clin Oral Implants Res.* [\[Crossref\]](#)
- Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1991) Cell guidance by ultrafine topography in vitro. *J Cell Sci* 99 : 73-77. [\[Crossref\]](#)
- Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. *Biomaterials* 33: 5230-5246. [\[Crossref\]](#)
- Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. *Proceedings of the National Academy of Sciences of the United States of America.* 103: 2480-2487. [\[Crossref\]](#)
- Ricci JL, Alexander H (2001). Laser microtexturing of implant surfaces for enhanced tissue integration. *Key Engineering Materials. Trans Tech Publ.*
- Delgado-Ruiz RA, Abboud M, Romanos G, Aguilar-Salvatierra A, Gomez-Moreno G (2014) Peri-implant bone organization surrounding zirconia-microgrooved surfaces circularly polarized light and confocal laser scanning microscopy study. *Clin Oral Implants Res.*
- Wood M (2007) Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. *J Royal Society Interface* 4: 1-17. [\[Crossref\]](#)
- Yamano SA, Ma RM, Shanti SW, Kim K, Wada,C, et al. (2010) The influence of different implant materials on human gingival fibroblast morphology, proliferation, and gene expression. *The Int J oral maxillofacial implants* 26: 1247-1255.
- Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. *Cell* 126: 677-689. [\[Crossref\]](#)
- Schellenberg, A, S. Joussen, K. Moser, N. Hampe, N. Hersch, et al. (2014) Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. *Biomaterials* 35: 6351-6358. [\[Crossref\]](#)
- Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. *Exp Cell Res* 101: 1-14. [\[Crossref\]](#)
- Dalby.M, M. Rieble, H. Johnstone, S. Affrossman, A.Curtis (2004) Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. *Cell biology international* 28: 229-236. [\[Crossref\]](#)
- Lu.X, Y.Leng (2009) Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. *Journal of Biomedical Materials Research Part B: Applied Biomaterials* 90: 438-445

22. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1987) Topographical control of cell behaviour. I. Simple step cues. *Development* 99: 439-448. [\[Crossref\]](#)

23. Biggs M, R. Richards, S. McFarlane, C. Wilkinson, R. Orefeo, M. (2008) Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. *Journal of the Royal Society Interface* 5: 1231-1242. [\[Crossref\]](#)

24. Calvo-Guirado J. L, A. Aguilar-Salvatierra, R. A. Delgado-Ruiz, B. Negri, M. P. R. Fernández, et al. (2015) Histological and histomorphometric evaluation of zirconia dental implants modified by femtosecond laser versus titanium implants: an experimental study in fox hound dogs. *Clinical implant dentistry and related research* 17: 525-532.

25. Lamers E, X.F. Walboomers, M. Domanski, J. te Riet, F. C. van Delft, et al. (2010) The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. *Biomaterials* 31: 3307-3316. [\[Crossref\]](#)

26. Puckett S, R. Pareta, T. J. Webster (2008). Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. *International journal of nanomedicine* 3: 229-241. [\[Crossref\]](#)

27. Matsuzaka K, Walboomers XF, Yoshinari M, Inoue T, Jansen JA (2003) The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. *Biomaterials* 24: 2711-2719. [\[Crossref\]](#)

28. Taniguchi Y, K. Kakura, K. Yamamoto, H. Kido, J. Yamazaki (2015) Accelerated Osteogenic Differentiation and Bone Formation on Zirconia with Surface Grooves Created with Fiber Laser Irradiation. *Clinical implant dentistry and related research*.

29. Ismail FS, Rohanizadeh R, Atwa S, Mason RS, Ruys AJ, et al. (2007) The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. *J Mater Sci Mater Med* 18: 705-714. [\[Crossref\]](#)

30. Abagnale G, M Steger, VH Nguyen, N Hersch, A Sechi, et al. (2015) Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. *Biomaterials*. 61: 316-326. [\[Crossref\]](#)

31. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanoporous metals: Ti, Ti6Al4V, and CoCrMo. *Biomaterials* 25: 4731-4739. [\[Crossref\]](#)

32. Azeem A, English A, Kumar P, Satyam A, Biggs M, et al. (2015) The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. *Nanomedicine (Lond)* 10: 693-711. [\[Crossref\]](#)

33. Klymov A, EM Bronkhorst, J te Riet, JA Jansen, XF Walboomers (2015) Bone marrow-derived mesenchymal cells feature selective migration behavior on submicro-and nano-dimensional multi-patterned substrates. *Acta biomaterialia*. 16: 117-125. [\[Crossref\]](#)

34. Dunn, G.,A. Brown. (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. *Journal of cell science* 83: 313-340. [\[Crossref\]](#)

35. Ricci J, J Charvet, S Frenkel, R Chang, P Nadkarni, et al. (2000) Bone response to laser microtextured surfaces. *Bone Engineering*. 25: 1-11.

36. Delgado-Ruiz RA, A Markovic, LJ Calvo-Guirado, Z Lazić, A Piatelli, et al. (2014). Implant stability and marginal bone level of microgrooved zirconia dental implants: A 3-month experimental study on dogs. *Vojnosanitetski pregled* 71: 451-461.

37. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL (2009) Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. *Implant Dent* 18: 57-66. [\[Crossref\]](#)

38. Chen W, Shao Y, Li X, Zhao G, Fu J (2014) Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. *Nano Today* 9: 759-784. [\[Crossref\]](#)

39. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Orefeo RO, et al. (2009) The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. *Biomaterials* 30: 5094-5103. [\[Crossref\]](#)

40. Lu X, Leng Y (2003) Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. *J Biomed Mater Res Part A* 66: 677-687.

41. Koo KT, Lee SW, Lee MH, Kim KH, Jung SH, et al. (2014) Time-dependent expression of osteoblast marker genes in human primary cells cultured on microgrooved titanium substrata. *Clin oral Implants Res* 25: 714-722. [\[Crossref\]](#)

42. Hamilton DW, Brunette DM (2007) The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. *Biomaterials* 28: 1806-1819.

43. Fransiska, S, Ho MH, Li CH, Shih JL, Hsiao SW, Thien SDV (2013) To enhance protein production from osteoblasts by using micro-patterned surfaces. *Biochem Engg J* 78: 120-127.

44. Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. *Exp Cell Res* 313: 1820-1829. [\[Crossref\]](#)

45. Yang JY, Ting YC, Lai JY, Liu HL, Fang HW, et al. (2009) Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. *J Biomed Mater Res A* 90: 629-640. [\[Crossref\]](#)

46. Lenhert S, Meier MB, Meyer U, Chi L, Wiesmann HP (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. *Biomaterials* 26: 563-570. [\[Crossref\]](#)

47. Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J (2012) In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. *Nanomedicine* 8: 308-317. [\[Crossref\]](#)

48. Prodanov L, Semeins CM, van Loon JJ, te Riet J, Jansen JA, et al. (2013) Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. *Acta Biomater* 9: 6653-6662. [\[Crossref\]](#)

49. Prodanov L, te Riet J, Lamers E, Domanski M, Luttge R, et al. (2010) The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. *Biomaterials* 31: 7758-7765. [\[Crossref\]](#)