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Abstract
Since 1945 Weiss Paul described the phenomenon ‘contact guidance’ which means the cell elongates along the direction of the groove and migrates guided by 
the grooves. Cell could sense the surface topography where it lies and react to these surface cues. Many researches have devoted themselves to reveal the potential 
mechanisms. The interaction is mainly mediated by the cytoskeleton, the focal adhesions and the extracellular matrix (ECM). But how would the groove dimensions 
affect the cellular behavior is still obscure. Nowadays, micro fabrication techniques such as electron beam lithography have been applied to the production of micro-
textured surfaces. They are relatively fast and cheap, and could fabricate microgrooves of reasonable size. Thus, they have been widely utilized to generate (micro-) 
nano-topographical surfaces or scaffolds for in vitro cell research. According to the report of P. CLARK, the response of cells to micro-grooved surfaces is cell type-
dependent, so the focus of this review is on the osteoblast(s) reaction to micro-grooved surfaces.
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Introduction
A century ago, in 1911 Harrison depicted that cells cultured on 

spider’s webs grew along the fibers [1]. Later on, in 1945 Weiss P 
initially named the phenomenon ‘contact guidance’: a tendency of cells 
to align, grow, or migrate along the grooves [2]. Cell can ‘sense’ the 
surface topography and then take reaction to these surface cues. The 
interaction between substrates and cells is achieved through the effort 
of the cytoskeleton, the extracellular matrix (ECM) [3-5] and the focal 
adhesions [6]. 

In terms of the defined (micro-) nano-topographical surface, they 
are usually produced by the micromachining technology: lithographic 
patterning (photolithography, electron beam lithography, colloidal 
lithography), galvanoformung abformung process LIGA, focused 
ion beam-chemical vapor deposition  FIB-CVD and so on. Some of 
these techniques such as electron beam lithography (EBL) have been 
developed for creating well-defined patterns with feature sizes <10 nm 
[7]. Recent years, femtosecond laser patterning has obtained a position 
in the microgrooves‵ machining [8,9]. These techniques promoted 
the development of biomaterials and tissue engineering greatly. 

As the response of cells to micro-grooved surfaces is cell type-
dependent [10], the react of osteoblasts to the micro-machined surface 
might be different from other cell types. This review is based on the 
gathered information about the defined microgrooves, ranging from 
nanometers to microns, role on the osteoblasts, aiming at finding out 
the interaction between these ultrafine arrays and the bone-forming 
cells. 

Micro/Nanofabrication technologies
A variety of methods such as Femtosecond laser microtexturing 

can be applied to the fabrication of microtextured surface. These nano/
micro patterning techniques were early used in the semiconductor and 
microelectronics industries [11], later they were increasingly applied in 
biology, medicine, and biomedical engineering fields [12]. Researchers 

[13,14] use these techniques to manufacture materials, attempting to 
get a value that is optimal for the growth of cells. These technologies 
both have their adaptations as well as limitations, also they have got 
developments. Hence it is hard to define the best tech in this field [15].

Microgrooved surface influences cellular behavior 
Cell adhesive to the grafting materials, more importantly, they are 

in reciprocity with them. Different surface materials and topographies 
may induce distinct cell morphology, proliferation, and gene expression 
[16]. Cells can “sense” substrate elasticity [17,18] as long as its surface 
patterns in the scope of 10 nm to 100 mm [19,20]. 

Different dimensions are thought to play varied roles in cellular 
behavior [10,21]. The average size of the osteoblasts is 20-30μm. When 
the dimensions of grooves/ridges are reduced to the sizes of the cells and 
less, topographic effects on cell orientation become more prominent 
[22]. As will be discussed below, a majority of results focused on 
groove width of the micro-or-nanoscaled surface, some reports show 
that ridge width is more important in conducting the cellular behavior, 
while maybe the groove depth is the leading factor inducing cellular 
activities. 

Groove/ridge topographies are important modulators of both 
cellular adhesion and osteospecific function and that groove width 
is vital in determining cellular response [23]. Certain groove width 
guides the cell to align along the direction [8,9,24,25]. The change of the 
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width affects celluar shape [26], attachment [27], cellular proliferation 
[28] as well as bone forming ability [25,26]. Form these opinions 
and Table 1 and 2, we can infer that substrates with the microgroove 
width of 1-5μm, particularly 2μm seems to be optical for the biological 
behavior of osteoblasts. On 2μm-wide-grooves the cellular adhesion 
[29], proliferation [28], osteogenic differentiation [28,30] as well as 
calcification [28]. Also，these nanophase material increased adhesions 
of osteoblasts compared with the conventional materials [31]. Depicted 
in table 2, almost all of these dimensions guide the cells to align along 
the long axis of micropatterns. Some nano-dimensions display an 
osteogenic influencing function [25,30,32].

Those who focused on the effect of ridge part had some limited 
findings. Alexey Klymov et al. designed the substrates with ridge to 
groove ratios of 1:1, 1:3 and 3:1. He demonstrated that nano-grooved 
patterns with the ridge to groove ratio of 1:3 showed cell repelling, 
meanwhile grooves with the ridge to groove ratio of 3:1 partially showed 
cell attraction during cellular selective migration [33]. Apart from that 
the ridge width clearly enhanced differentiation of MSCs towards 
specific lineages [30]. Tests on other kinds of cells, say fibroblasts, 
found that ridge width is the main parameter affecting cell alignment 
(alignment being inversely proportional to ridge width) [34]. 

Actually there is no defined item about the influence of groove 
depth on the osteoblast. From the information Azeem A reported, 
306nm and 2046nm promoted osteoblasts alignment parallel to 
underlined topography. Besides this size showed its osteogenesis ability 
[32]. Kenichi Matsuzaka observed that on a 0.5μm deep and 10μm wide 
grooved surface, the cell descends into the groove, on a 1.5μm deep and 
1μm wide grooved surface, cells attach to the ridges only. Nowhere, 

differences were observed between specimens with different groove 
depths. Instead Kenichi Matsuzaka attributed this phenomenon to the 
width of the ridge merely [27]. 

In vivo studies on effect of the surface micromachining to 
the osseointegration also take for the positive side. The laser 
micromachining technology enhances bone [24] and soft-tissue 
integration and controls the local microstructural geometry of attached 
bone [35]. The organized pattern of the microgrooved surfaces is 
capable of resulting in transverse collagen fiber microenvironment 
reaction to the load, being positive to promote and to maintain the 
bone remodeling; in addition, blood vessels and bone cells are able to 
penetrate microgrooved surfaces [36]. What’s more, micromachined 
implants enhances primary and secondary implant stability, preserves 
crestal bone levels [36,37].

Conclusions and outlook
With the acceptance of ‘contact guidance’ theory, many defined 

patterns were made by various micro/nano technoloies, prompting 
the study of different dimensions to the cellular behavior. The limited 
collected data in the table 1 and 2 showed that the groove width is the 
most influencing factor affecting the osteoblasts. On the micropatterned 
substrates, osteoblasts adhere and elongate along the long axis of the 
microgrooves. Improper width of microgrooves may lead to adhesion 
down growth. On certain groove width cell density, proliferation and 
osteogenic ability show an improvement. The differentiation also can 
be affected by the nanotopography. However, the reports based on the 
virtues of the ridge width and the depth of the array still needs further 
exploration. Moreover, we can do a further step research on the effect 

References Cell and Substrate type Groov width(µm) Ridge width 
(µm)

Groove Depth 
(µm)

Results

Delgado-Ruíz et al.   
2015) [9]

hFOB, zirconia 30 70 — LSA, density and cellular activity increase

(Matsuzaka et al.   
2003)  [27]

RBM cells, polystyrene  1, 2, 5, 10       1, 2, 5, 10      0.5, 1,1.5          smooth and grooves >5 μm cells extensions close to substrates grooves 2 μm 
were bridged

(Puckett et al.   
2008) [26]

human osteobalsts, 
titanium

80,48,22       45, 35 30           — Attachment gradually decrease, cellular function increase, cellular shape change

(Biggs et al.   
2009) [39]

HOB, PMMA 10,100 10,100 300 nm 10μm focal adhesions and osteospecific lineage decrease adipospecific genes 
increased 100μm cellular adhesion increase

(Ismail et al.   
2007) [29]

MG63, silicon 2, 4, 8,10 1.5-2 cell viability 8, 
10 μm grooves 
increase

smaller groove sizes smooth one’s better cell adhesion

(Abagnale et al.   
2015) [30]

MSCs, Polyimide 2,3,5,10,15 2,3,5,10,15 15 down to sub-
micrometer

1 5μm ridges increased, adipogenic differentiation,2μm enhanced osteogenic 
differentiation

(Biggs et al.   
2008) [23]

HOBs, Silicon 10, 25, 100 10, 25,100 330nm planar adhesion more,100μm increased osteospecific function, 25μm reduction 
SMA increase FX formation,10μm reduced, adhesion and induced an interplay 
of up- a and downregulation of gene expression

(Taniguchi et al.   
2015) [28]

MC3T3-E1, zirconia, 
polycrystal

2μm —  —  proliferation was significantly greater, The Runx2 mRNA level increased time 
dependently, calcification and ALP activity and osteocalcin mRNA levels were 
higher

(Lu and Leng 
2009) [21]

osteoblast, myoblast, 
silicon

8, 24 —          2, 4, 10 8μm width strongly affect both osteoblasts and myoblasts 24μm strongly affect 
myoblasts only

(Lu and Leng 
2003) [40]

osteoblast, myoblast, 
silicon

8, 24 — 2, 4, 10 8μm width strongly affect both osteoblasts and myoblasts, 24μm strongly affect 
myoblasts only

(Lu and Leng 
2003) [40]

SaOS-2, Ti and HA 4, 8, 16, 24, 30, 38 — 2, 4, 10 No difference in orientation angle between HA and Ti microgrooves

(Koo et al.   2014) 
[41]

human primary cells, 
titanium

15-, 30-, 60- — 3.5- ,10- lower levels of type I collagen α1 gene expression at day 14, extremely increase 
in osteopontin gene expression at days 21 and 28

(Hamilton and 
Brunette 2007) [42]

Osteoblast cell, epoxy-
resin  

 Pitch: 30-175 5-175 Total tyrosine phosphorylation increased Src levels decrease, but FAK and 
ERK1/2 phosphorylation were highest, Inhibition of Src phosphorylation with 
PP2 inhibited FAK and ERK 1/2 phosphorylation

(Fransiska et al.   
2013) [43]

ROS, silicon from 1 to 20 — — width less than 10 μm induced the alignment of osteoblasts, increase osteogenic 
proteins

Table 1. The influence of microscale microgrooves on osteoblasts′ function.

https://en.wikipedia.org/wiki/Cell_proliferation
http://www.ncbi.nlm.nih.gov/pubmed/?term=Azeem A%5BAuthor%5D&cauthor=true&cauthor_uid=25816874
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of the wettability and inclination of ridge. Soluble biochemical cues, 
dynamic control and regulation of topographical features, as well as 
cell co-culture systems, have all been declared to act in synergy with 
physical cues in regulating stem cell fate [38]. When we design a test, 
multi-factors should be taken into consideration. In conclusion, critical 
dimensions do play a part in regulating celluar behavior. However, it 
is a pity that we have not completely revealed the mystery of micro-
nanotopographical on the osteoblasts. In addition, which dimension of 
microarrays is optimal for the adhesion, proliferation, differentiation, 
and osteogenisis is still under research. We can use the obtained data 
as a guide and reference for the study in the future. Besides, these 
results could be helpful in the design and fabrication of implants and 
biomaterials. 
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