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The evolution of rock microstructure is a result of complex 
interactions between the rock surface and reactive fluids and depends 
on the thermodynamic conditions, the rock and fluid composition 
and the flow regime [1]. At the pore-scale, the dissolution mechanism 
consists of mass transport of the reactant by diffusion and advection 
to the solid surface, chemical reaction at the fluid-mineral interface, 
and the product mass transport away from the surface [2]. Natural 
heterogeneity of the porous rocks for the case of rapid dissolution of 
the mineral by the reactant fluid results in localization of the flow path 
and the formation of highly conductive channels called wormholes [3]. 
Several studies have revealed a variety of dissolution patterns from face 
dissolution to uniform dissolution depending on the injection rate and 
fluid/mineral properties [4-6].

A number of imaging techniques such as Wood’s metal casting, 
neutron radiography and scanning electron microscopy have been used 
to study the dissolution patterns. Among them, X-ray micro-computed 
tomography (micro-CT) is a superior non-destructive imaging method 
which can create high-resolution images with large field of view [7-10].

In this work, two carbonate core samples were considered for the 
dissolution experiments. The first sample was an oolitic limestone 
with multi-modal pore size distribution, while the second one was a 
wackestone-packstone carbonate with a bimodal pore size. Dissolution 
experiments were conducted in core plugs of 7 mm diameter using 
ethylenediaminetetraacetic acid (EDTA) solution at pH 12 as the 
reactive fluid. The experiments were performed at ambient conditions 
and were terminated after significant changes occurred in the cores 
as indicated by the pressure transducers. Details of the experimental 
procedure were described in [11].

The pre- and post-dissolution dry samples were imaged using a 
high resolution micro-CT scanner at the Australian National University 
(ANU) [12] with at least 8.5×8.5×8.5 mm field of view and resolutions 
of less than 5 µm. The post-dissolution image was superposed to the 
pre-dissolution image using a 3D registration technique developed by 
Latham, et al. [13]. In the micro-CT image, the grey-scale values of 
the pixels correspond to the density and composition of the material 
imaged. Hence, in monomineralic rock, such as the samples studied in 
this paper, micro-CT images are 3D porosity maps.

Figures 1 and 2 show examples of registered slices of the oolitic 
sample from top and side views, respectively.  Visual observations of 
the images clearly illustrate that the reactive fluid locally increased 
the pore diameters across most parts of the sample and hence led to a 
quasi-uniform dissolution pattern. This pattern belongs to local non-
equilibrium dissolution category [2] in which there is no sharp interface 
between the reactive fluid zone and the porous medium.
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Figure 1. (Top) pre-dissolution micro-CT slices of the oolitic sample; (Bottom) the 
corresponding registered post-dissolution images. The slices are at different distances to 
the front (injection face) of the samples: (left) 6.42 mm, (middle) 9.50 mm, and (right) 
11.55 mm.

 

Figure 2. Side-view registered slices of the oolitic sample in (top) pre-dissolution and 
(bottom) post-dissolution states, at different positions. 
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Figures 3 and 4 illustrate examples of registered slices of the 
wackestone-packstone sample from top and side views, respectively. In 
contrary to the observation on the oolitic sample, visual observations 
of the images of the second sample reveal a different dissolution pattern 
which is called conical wormhole dissolution pattern. In this pattern, 
the reactive fluid was consumed over small parts of the mineral surface 
area leading to the formation of a few highly conductive flow channels, 
i.e. wormholes. The conical wormhole corresponds to the local-
equilibrium dissolution category [2] in which there is a sharp interface 
between the fluid zone and the medium as indicated in Figures 3 and 4.

As found in this work, the micro-CT technique can provide high 
resolution images of successively disturbed specimens. This, in turn 
provides an important basis to calculate the evolution of rock micro- 
and macro-scale properties using advanced numerical techniques at the 
pore scale. In addition, micro-CT is a useful method to study pore scale 
reactive displacement mechanisms and their effects on the evolution of 
rock properties.
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Figure 3. (Top) pre-dissolution micro-CT slices of the wackestone-packstone sample; 
(Bottom) the corresponding registered post-dissolution images. The slices are at different 
distances to the injection face of the samples: (left) 5.84 mm, (middle) 7.98 mm, and (right) 
10.11 mm.

Figure 4. Side-view registered slices of the wackestone-packstone sample in (top) pre-
dissolution and (bottom) post-dissolution states, at different positions.


	Title
	Correspondence

