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Caffeine (1,3,7-trimethylxantine) is the most commonly consumed 
social drug in western society for increased physical and cognitive 
performance [1-5], and it is the main ergogenic resource used by 
athletes [6]. Initially controversial, caffeine was banned by the 
International Olympic Committee from 1980-2003 [1,6,7], but then in 
2004 its use was approved by the World Anti-doping Agency (WADA), 
and later this year by the U.S. Anti-doping Agency (USADA; 2016). 
However, caffeine has remained on the lists of monitored substances of 
these anti-doping agencies.

The ergogenic effects of caffeine have been demonstrated in 
different sport modalities, namely running [8,9], cycling [10,11], 
rowing [12], track and field [3], team sports [4], and martial arts [13], 
among others. 

Caffeine is rapidly and completely absorbed by the gastrointestinal 
tract and is readily distributed throughout all tissues of the body, 
including muscles and the central nervous system (CNS), which are 
believed to be the main recipients of caffeine’s ergogenic effects [2,14]. 
Ergogenic doses of caffeine ranging from 3 to 9 mg/kg body mass 
[6] appear to have no adverse effects. A moderate oral dose of 6 mg/
kg body mass, which elicits peak plasma levels of about 60 µmol/L 
concentrations after 30 to 60 min, with half-life for elimination 
range between 2.5–10 h, is known to enhance physical and cognitive 
performance [5,6,10,14,15]. Blood levels of 1 – 2 mmol/L are known 
to be toxic and even lethal [14], and have been associated with 
suicides [16]. Caffeine’s molecular mechanisms for increasing physical 
performance are still virtually undefined. However, due to its ability to 
cross the blood-brain barrier at blood concentrations generated by a 
moderate ergogenic dose, and because of its properties as a stimulant 
psychotropic drug [15,17], mechanisms involving metabolic and 
central effects have been proposed.

Metabolic effects of caffeine have been mainly related to the 
enhancement of lipolysis, fatty acid oxidation and energy expenditure 
via the stimulation of the sympathetic nervous system [18,19] and 
a sequential sparing of muscle glycogen [20]. However, the main 
pharmacological effects of caffeine appear to be mediated via the CNS 
where caffeine counterbalances the inhibitory neuromodulation of 
adenosine in order to induce effects on both the CNS and peripheral 
nervous system to reduce pain and exertion perception [21], to 
improve motor recruitment [22] and to increase excitation-contraction 
coupling [23,24]. 

Caffeine is a non-selective competitive adenosine receptor 
antagonist (A1R and A2AR subtypes) that increases neurotransmission 
via dopamine D2 receptors (D2R) [25,26]. The striatum expresses high 
levels of A2AR where they are co-expressed with postsynaptic D2R, 

forming A2AR-D2R heterodimers [25]. In this scenario, caffeine fails to 
be ergogenic in the mouse lacking A2AR [27], or in wild type rats treated 
with the selective A2AR agonist 5’-N-ethylcarboxamidoadenosine 
(NECA) [26], which denotes the participation of these receptors in 
caffeine’s central-mediated ergogenic effects.

When designing experimental models to better define the 
molecular mechanisms involved in the enhanced capacity of caffeine 
to positively modulate physical performance, animals received the 
drug mostly during resting metabolic conditions. Here, we confirmed 
previous observations that a moderate human ergogenic dose of 
caffeine (6 mg / kg body mass), administered intraperitoneally (i.p.) 
at resting basal conditions (Figure 1A), significantly increased exercise 
performance in adult (three-month-old) and older (seven-month-
old) mice that were challenged in a maximal exercise treadmill test 
(Figures 1B and 1D, respectively). Mice were tested in the treadmill 
after 30 min of caffeine i.p. administration, at the caffeine blood peak 
period defined for humans [15]. Drug-receiving mice remained on the 
treadmill for longer periods of time, and as a consequence reaching 
significantly higher running speeds (Figures 1B and 1D). In addition, 
higher levels of blood lactate were observed at the end of the exercise 
protocol, in agreement with increased exercise workloads (Figures 1C 
for three-month-old mice and Figure 1E for seven-month-old mice). 
Even when significant, the observed ergogenic effect in both groups of 
animals was modest compared to the overt effect seen in humans [8,9]. 
Therefore, we wonder whether the mice were effectively in the blood 
peak of caffeine and whether it differs when the sympathetic nervous 
system is stimulated by physical activity [28]. 

Mice at rest or submitted to continuous physical activity for 30 min 
received a single caffeine dose (6 mg/kg body mass; i.p.) and afterwards 
the blood and tissue concentrations of the drug were measured over 
time (Figure 2A). Blood caffeine pharmacokinetics showed the same 
profile in both groups of mice, in the resting and active animals, with 
peak plasma levels of 24.1 and 20.0 µmol/L after 15 min, and with a half-
life for elimination of 31.6 and 33.5 min, respectively. A single Student t 
test analysis at 0 and 15 min (Figure 2B) showed statistical differences, 
indicating the distribution of caffeine into the tissues was faster when 
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the metabolism was activated by physical exercise. In agreement, higher 
drug concentrations were induced in the muscles that performed 
the imposed physical activity. Significantly higher concentrations 
of caffeine were observed in the quadriceps of active mice, while no 
differences were noticed in the less-recruited, and therefore, less-
perfused anterior tibial muscle (Figure 1D). In contrast, lower levels 
of caffeine accumulated in the brain, particularly in the striatum where 
reductions up to 50% were found (Figure 1G). Furthermore, among the 
three brain tissue regions investigated, the striatum showed the lowest 
caffeine accumulation (Figures 1E to 1G). 

This differential pharmacokinetics observed in the mice encourages 
more detailed studies in the future with more appropriate experimental 
designs, since caffeine kinetics does not follow the profile observed 
in humans. Even when caffeine is orally administered in humans, it 
has been described that this via has a comparable pharmacokinetics 
with intravenous administration, leading to superimposable plasma 
curves [15]. Therefore, if human caffeine pharmacokinetics are 
directly extrapolated onto different animal models, that will generate 
contradictory results. The peak of caffeine in the blood is shorter than 
in humans (about 15 min for mice; about 30 - 60 min for humans), 

Figure 1.C57BL/6 mice (3- or 7-month-old; male) received a single dose of 6 mg/kg caffeine intraperitoneally (i.p.), and 30 min later animals were submitted to an incremental exercise 
test (0.2 km/h of increment each 3 min) (A). The ergogenic effect of caffeine was quantified through survival curves (B, D) and by the levels of blood lactate at the end of the protocol (C, 
E). Lactate concentrations were measured by using a specific sensor (YSI, Yellow Springs, OH, USA). The survival curves were analyzed by the Gehan-Breslow-Wilcoxon test and lactate 
levels by the Studentt test. *P<0.05. Results are presented as mean ± S.E.M.
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which is in agreement with the greater metabolic rate per gram of body 
weight observed in mice.

When the sympathetic nervous system, and therefore the 
metabolism is activated by physical exercise, much attention should 
also be paid to the group of skeletal muscles involved; i.e. different 
muscles are recruited in the running wheel, treadmill, swimming pool, 
etc.; therefore, according to the data presented here, it can be assumed 
that caffeine distribution will deviate to the more active tissues. 
Consequently, it is appropriate to perform a caffeine distribution 
curve for the type of physical activity selected, since the enhancement 
of lipolysis or fatty acids metabolism could differ according to the 
levels of caffeine reached, and their corresponding ergogenic effects. 
In line, it has already been described that high levels of tissue caffeine 
increases lipolysis and heat production in skeletal muscles by the 
inhibition of phosphodiesterases and also by increasing the content 
UCPs (uncoupling proteins) [29]. The effect might be misunderstood if 
investigating in a non-specific skeletal muscle. 

Finally, the central performance-enhancing effect of caffeine, 
particularly in the striatum, where it enhances neurotransmission 
through the antagonism of the adenosine receptors, influencing the 

dopaminergic system [25,26], would be more sensitive to the caffeine 
ergogenic dose in the treadmill activity, because the lowest levels of 
the drug were reached in this tissue (Figure 1G). This is relevant when 
considering the recent findings showing that caffeine also stimulates 
dopaminergic neurons in a direct and dose-dependent manner [30]. 
On the other hand, microdialysis studies showed that dopamine 
levels rise in the brains of rats after an acute caffeine administration, 
suggesting a direct effect of the ergogenic compound on dopamine 
synthesis. This effect was also dependent on the dose of caffeine used, 
and therefore on the elicited levels of caffeine in the brain tissue [31]. 
However, these data were contradicted by a report performed on 
humans, demonstrating that caffeine increases striatal dopamine D2/
D3 receptor availability and not dopamine levels at doses that are 
relevant to human consumption [25]. Nevertheless, regardless of the 
specific mechanism there is growing evidence pointing to the direct 
effect of caffeine on the dopaminergic system, which appears to be 
dose-dependent, and that could be erroneously interpreted according 
to the experimental design used. 

Here we consider some potential pitfalls that could emerge when 
investigating caffeine’s ergogenic effects in mice. Pharmacokinetics of 

Figure 2.C57BL/6 mice (3-month-old; male) were at rest (mice at rest: white circles) or submitted to 30 minutes of running in an adapted treadmill at a speed of 0.3 km/h (active mice: 
black circles). After 30 minutes, a single dose of 6 mg / kg caffeine was administrated intraperitoneally (i.p.) (n=3 mice/group) (A) and pharmacokinetics and tissue distribution of caffeine 
investigated. Caffeine was determined by liquid chromatography coupled to a photodiode array detector (Alliance, Waters, Milford, MA, USA) as previously reported in the serum (B), the 
skeletal muscles, quadriceps (C) and anterior tibial (D), and in the brain tissue regions, prefrontal cortex (E), hippocampus (F) and striatum (G), 0, 15, 30, 45, 60 and 120 minutes after the 
drug administration. Two-way ANOVA followed by the Turkey’s test; *P<0.05. In panel B, Student ttest was performed at 0, and 15 min. Results are presented as mean ± S.E.M. 
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caffeine is in general performed by researchers of the physical exercise 
field, in experimental animals under resting conditions, which leads 
to a similar profile as that of rodents where the sympathetic nervous 
system was activated. However, the tissue distribution of caffeine 
significantly differs, achieving higher drug accumulation in the skeletal 
muscle recruited by the specific activity. Brain tissue distribution is 
difficult to predict; it was observed here that after 30 min of running on 
the treadmill the lowest concentrations of a single dose of caffeine were 
achieved in the striatum. Thus, if caffeine’s effects are concentration-
dependent, the pharmacokinetics and distribution of the drug must be 
investigated in advanced.
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