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Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids caused by an imbalance among synthesis, ingestion, oxidation and exporting 
fatty acids. Animal models using diets with high levels of lipids or carbohydrates and excessive treatment with glucocorticoids have mimicked the alterations in 
hepatic steatosis. Nutritional interventions using n-3 polyunsaturated fatty acids (EPA-eicosapentaenoic acid and DHA-docosahexaenoic acid) have shown to be 
able to decrease hepatic steatosis, particularly by reducing the activity of lipogenic enzymes and an increasing β-oxidation flux. In such field, new mechanisms such as 
oxidative enzymes activity and changes in endocannabinoid system tone have been investigated to elucidate these effects. In addition, investigation of new EPA and 
DHA specific molecular targets have been discussed by new studies. 
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Non-alcoholic fatty liver disease (NAFLD) is one of the most 
common forms of chronic liver disease in developed countries, affecting 
20 to 30% of the general population [1-3]. This disease is defined by 
the pathological accumulation of excessive fat in the liver without 
alcohol consumption, like the accumulation of hepatic triglycerides 
(TGs) resulting from unbalanced uptake, synthesis, exportation and 
oxidation of fatty acids [4,5]. Such state is characterized by hepatic 
steatosis, liver cell injury, and lobular hepatitis [4].

Obesity is an important risk factor for the development of NAFLD, 
mainly visceral fat accumulation, therefore, insulin resistance may 
also be responsible for the development of NAFLD even in non-obese 
and lean individuals [6-8]. However, the pathogenesis of NAFLD 
is not completely clear. Multiple mechanisms, such as aberrant lipid 
metabolism, dysregulated cytokine production, oxidative stress, and 
inflammation in hepatocytes, are believed to be involved [9-12]. 

Other factors that play a role in hepatic lipid content can 
include diet, de novo hepatic lipid synthesis, and genetics factors 
[13-16]. Following such line of thinking, to reproduce the etiology, 
development, progression and outcome of liver disease, animal-based 
experimental models are commonly used, such as high caloric diet 
intake (overfeeding), high fat intake (especially saturated fatty acids), 
high intake of simple sugars and cafeteria diet [17-21]. Furthermore, 
some pharmacological interventions can also cause NAFLD. Synthetic 
glucocorticoids (GCs) are substances mimicking endogenous steroid 
hormones secreted by the adrenal cortex upon activation of the 
hypothalamic-pituitary-adrenal (HPA)-axis. They can contribute to 
the development of metabolic syndrome. Synthetic GCs are commonly 
applied as anti-inflammatory drugs. However, the use for prolonged 
time or in high doses can cause side effects, such as weight gain, insulin 
resistance, hypertriglyceridemia, hyperphagia and central obesity [22-
26].

Although the pathogenic mechanisms involved in hepatic lipid 
accumulation caused by diet or synthetic GC use are not completely 
understood, some studies have been conducted to find adjuvant 

strategies to attenuate the changes evidenced in this metabolic disorder, 
as the ingestion of polyunsaturated fatty acids (PUFAs) [27-30].

Fatty acids can influence many cell properties, resulting in altered 
metabolism, gene expression, modified responsiveness to hormones, 
and production patterns of biologically active substances. Therefore, 
fatty acids can modulate physiological functions and be beneficial to 
promote health and well-being [31]. 

In addition, some evidence suggests that PUFAs omega-3 (n-3), 
mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 
can contribute to improve several metabolic dysfunctions (e.g. increase 
glucose tolerance, insulin sensitivity, and reducing the risk factors for 
chronic non-communicable diseases and metabolic syndrome) [32-39]. 

The effects of polyunsaturated fatty acids ingestion reducing 
accumulation of liver lipids in pre-clinical models have been shown by 
different research groups [40-44]. However, the molecular pathways 
explaining such effects are still under investigation. Among different 
pathways and molecular targets, the activation of the transcription 
factor peroxisome proliferator activated receptor-α (PPAR-α) is the 
most studied and most concise result  [32,46-49]. These studies show 
that the activation of the PPAR leads to a lower expression and activity 
of lipogenic genes and enzymes, such as sterol regulatory element-
binding protein 1c (SREBP-1c), carbohydrate responsive element-
binding protein (ChREBP), fatty acid synthase (FAS), acetyl-CoA 
carboxylase (ACC), and HMG-CoA reductase. Also, PPAR activity 
and expression can be linked to increasing lipoprotein lipase (LPL) 
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activity, carnitine palmitoyltransferase (CPT) activity, and β-oxidation 
flux, promoting higher  oxidation of fatty acids  [32,45-50]. Mice 
supplemented with fish oil (a source of EPA and DHA) and fed with 
high-fat diet have shown that increasing the expression of enzymes 
related to lipogenesis, and enzymes involved in the oxidative capacity 
are important for controlling the accumulation of liver lipids [51]. This 
study showed an increase in the activity of medium-chain acyl-CoA 
dehydrogenase (MCAD), acyl-CoA oxidase (AOX), and increased 
content of the peroxisomal membrane protein 70 (PMP70) in mice fed 
with fish oil [51]. Such data indicate that supplementation of fish oil 
reduces accumulation of the fatty acids in liver promoting increased 
oxidative capacity.

Furthermore, a recent study showed that purified EPA and 
DHA have different effects on atherogenic high fat (AHF) NAFLD 
development of diet-induced disease in mice. EPA and DHA reduced 
the SREBP-1 protein and expression of lipogenic genes. However, 
EPA was more effective than DHA in reducing mRNA expression 
of FAS, (ELOVL family member 6) Elovl6 and glycerol-3-phosphate 
acyltransferase (GPAT-1). The authors also showed that cell expression 
death inducing DFFA like effector c (CIDEC), a protein located in lipid 
droplets playing a key role in fatty liver formation, was significantly 
suppressed in the AHF + EPA, but not in the AHF + DHA group [52]. 
Therefore, it is important to consider that these PUFAs (EPA and 
DHA) have specific targets but can contribute together to attenuate the 
accumulation of fatty acids in the liver.

A study with LDLR -/- mice with Nonalcoholic Steatohepatitis 
induced by Western diet (WD) showed that diets containing EPA 

and DHA have a hepatoprotective effect [53]. The authors showed 
that dietary EPA and DHA attenuates hepatic inflammation by 
suppressing saturated (SFA), monounsaturated fatty acids (MUFA), 
and sphingomyelin production. Apparently,  this was achieved by 
suppressing substrate availability (citrate) and the expression of 
enzymes (FAS, ATP citrate lyase-ACL, stearoyl-CoA desaturase-1- 
SCD1, serine-palmitoyl transferase long chain base subunit-1-
SPTLC1, phosphatidylcholine: ceramide choline phosphotransferase 
1-SGMS1) involved in these pathways.  Furthermore, DHA and EPA 
seemed to control cellular levels of antioxidants such as ascorbate 
and α-tocopherol, and increased the formation of oxidized lipids 
that can be hepatoprotective (epoxy and di-hydroxy-fatty derivatives 
of EPA and DHA). In particular, this study showed that DHA 
improved methylglyoxal detoxification induced by WD, this finding 
was important to understand how DHA regulates glucose and lipid 
metabolism [53]. Thus, a diet with DHA>EPA reduced the progression 
of hepatic steatosis by controlling the activation of transcription factors 
involved in lipid metabolism, oxidative stress, and inflammation. This 
shows that, besides acting together in some experimental models, DHA 
and EPA can modulate some molecular pathways and the respective 
outcomes differently.   

Additional mechanisms have been investigated to further 
elucidate the effects of EPA and DHA on hepatic lipid metabolism. 
Mice fed a WD containing cod (a fish source of EPA and DHA) 
showed a significant increase in the concentrations of EPA and DHA, 
and an attenuation in hepatic fat accumulation, accompanied by a 
change in the endocannabinoid system tone. The presence of higher 
concentrations of EPA and DHA, when compared to arachidonic acid, 

Figure 1.Summary of EPA and DHA molecular effects related to the reduction in hepatic lipid accumulation. Abbreviations: EPA: eicosapentaenoic acid, DHA: docosahexaenoic acid, 
EPEA: eicosapentaenoyl ethanolamide, DHEA: docosahexaenoyl ethanolamide, 2-AG: 2-Arachidonoylglycerol, AEA: N-arachidonoylethanolamine, MCAD: medium-chain acyl-CoA 
dehydrogenase, AOX: acyl-CoA oxidase, PMP70: peroxisomal membrane protein 70, SCD1: stearoyl-CoA desaturase-1, SPTLC1: serine-palmitoyl transferase long chain base subunit-1, 
SGMS1: phosphatidylcholine:ceramide choline phosphotransferase 1, CIDEC: death inducing DFFA like effector c, GPAT-1: glycerol-3-phosphate acyltransferase, ACC: acetyl-CoA 
carboxylase, FAS: fatty acid synthase, SREBP-1c: sterol regulatory element-binding protein 1c, ACL, Elovl 6: ELOVL family member 6, PPARα: peroxisome proliferator activated 
receptor-α, ChREBP: carbohydrate responsive element-binding protein.
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leads to the reduction of synthesis of 2-arachidonoylglycerol (2-AG), 
N-arachidonoylethanolamine (AEA), and increases the availability 
of substrate for the formation of endocannabinoid derivatives 
from EPA and DHA (e.g. eicosapentaenoyl ethanolamide (EPEA) 
and docosahexaenoyl ethanolamide (DHEA), respectively). This 
mechanism can partly explain the attenuation of the increase of hepatic 
lipids, and the development of obesity in WD and cod fed mice [54].

Thus, the most recent literature shows that EPA and DHA (n-3 
PUFAs present in fish oil and oily fish) can attenuate the accumulation 
of lipids in the liver in pre-clinical models. Such effects are associated not 
only with n-3 fatty acids influencing the activity of proteins involved in 
lipogenesis and β-oxidation but also with metabolic oxidative enzymes 
and changes in endocannabinoid system tone (Figure 1). Further 
research should explore these mechanisms, especially distinct EPA and 
DHA  effects on specific molecular targets. This could lead us to the 
next generation of effective therapeutic approaches. 
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