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Abstract

We present an extension to 29 parcels of our earlier 5 parcel cerebellar segmentation method based on active shape and appearance modeling. The 29 parcel
segmentation was trained on expert hand delineated parcellations of prospective motion corrected 0.7 mm?® images. Test-retest reliability and an expert agreement
validity assessment is presented, and the method is then applied to images from adolescents with histories of prenatal alcohol exposure (PAE) and non-exposed
controls (NC) that had been previously analyzed with the 5 parcel method. The additional insights from the 29 parcel segmentation regarding the effects of PAE on

the cerebellum are then presented.

Introduction

The cerebellum is a key region for integration of information for
both motor and non-motor functions, and cerebellar abnormalities
may underlie some of the sensory-motor, cognitive, and emotional
deficits observed in many disorders, including alcoholism and other
addictions.

Cerebellar structure and connectivity

The cerebellum receives extensive afferent input from prefrontal
and association cortices relayed via pontine nuclei. Rs-fMRI
demonstrates cerebellar involvement in neocortical functional
networks, and cerebellar activation with a variety of cognitive and
affective brain functions, including those related to addiction (i.e.,
insight, reward, motivational drive, saliency, and inhibitory control).
The cerebellum has an outer cortical gray matter layer, with an inner
layer of white matter scaffolding. Input is received through two major
brainstem afferent relays (Figure 1), the inferior olive and the pontine
nuclei, via climbing fiber (through the inferior cerebellar peduncle)
and mossy fiber (through the inferior cerebellar peduncle) pathways.
Both pathways relay cortical inputs (including from non-motor cortical
regions) to the cerebellum [1,2]. Given its highly uniform neuronal
structure, the cerebellum has been hypothesized to have a single
generalizable function [3-5] - modulating and optimizing activation
in different domains depending on the cerebral inputs the cerebellar
region receives. This theory suggests that the cerebellum acts as an
oscillation dampener, optimizing performance by modulating behavior
and affect according to context. For example, the cerebellum may
modulate emotional processes by integrating positive and negative
affective inputs in the same way that it modulates fine motor control by
integrating sensory inputs.

A feedforward loop of the cerebrocerebellar circuit is comprised of
projectionsfrom the prefrontal cortexto the pons, followed by projections
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from the pons to the cerebellum (ie., the corticopontocerebellar
system). The feedback loop of this circuit is comprised of cerebellum
projections to the premotor and prefrontal cortices via the thalamus
(i.e., the cerebellothalamocortical system). Volume shrinkage of any
nodes within these cerebrocerebellar circuits, or white matter damage
to any of the connecting fibers, may underlie cognitive, affective, and
motor deficits of functions that require cerebellar involvement for
optimum performance.

Cognitive function and the cerebellum

Many cognitive tasks that require prefrontal cortex also involve
the cerebellum. Diamond [6] reviewed the literature showing the close
interrelationship of motor, cognitive, and affective development and
also the lockstep development of the neocerebellum and dorsolateral
and dorsomedial prefrontal cortex. (i.e., most cognitive and emotional
tasks involving dorsolateral or dorsomedial prefrontal cortex also
involve the neocerebellum). fMRI studies show that the cerebellum and
prefrontal cortex co-participate when tasks are: a) difficult, b) novel vs.
familiar and practiced, c) unstable, d) require speed, and e) in general,
are unable to operate on automatic pilot. Lesions in prefrontal cortex
are often associated with contralateral cerebellar hypometabolism and
neocerebellar lesions can be associated with frontal hypometabolism.
The protracted duration of prefrontal maturation is well appreciated,
while the similarly protracted period of neocerebellar maturation
is relatively ignored or only newly appreciated. This is true despite
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Figure 1. Schematic of the cerebellar circuitry

numerous studies showing close coactivation of the neocerebellum with
dorsolateral or dorsomedial prefrontal cortex during cognitive tasks.
When prefrontal activation is increased or decreased, corresponding
increases or decreases in activation of contralateral cerebellar cortex
are observed. Using rudimentary measurements of cerebellar, pontine,
thalamic, and cortical volumes, it has been shown that disruption of the
corticopontocerebellar and cerebellothalamocortical systems is related
to cognitive deficits in alcoholism [7]. This short review suggests that a
full understanding of role of the prefrontal cortex in the development
of alcoholism and other addictions could only be fully appreciated if
cerebellar involvement is studied in the same cohorts as the cerebrum.

The cerebellum’s role, as a modulator, fits in nicely with existing
models of addiction. The iRISA (Impaired Response Inhibition and
Salience Attribution) four-circuit model of addiction [8-10] provides a
framework for the cerebellum’s possible role. The iRISA model consists
of inter-connected circuits for memory, reward/saliency, executive
control, and motivation/drive. Behavior in response to potential
rewards is mediated by interactions among these four circuits. In the
actively addicted brain, the appetitive drive components of these circuits
are amplified, while the inhibitory control and emotion regulation
components are diminished [11]. A model for the cerebellum’s role in
addiction is that it is influential in maintaining the homeostatic balance
of the iRISA circuits [12].

Neuroimaging research in addiction [7,13-18] implicates cerebellar
gray matter deficits in Lobule VI, VIIb, Crus I, Crus II, and the vermis
in the cerebellum’s impaired ability to integrate activity across the iRISA
component functions. In an analysis of functional connectivity in a
large dataset of about one thousand healthy subjects, cerebellar regions
were associated with multiple cerebral resting state networks. Lobules
VI, VIIb, and Crus I were associated with dorsolateral and dorsomedial
prefrontal cortex networks related to cognitive control [19], in
agreement with other studies in smaller samples [12,20,21], and with
tracer studies in non-human primates showing connections between
these cerebellar and cerebral areas [22]. In the addicted brain, impaired
modulation (inhibition) of brain circuits related to reward/salience,
motivational drive, and memory results in an increased drive toward
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externalizing behavior, while disruption of reciprocal pathways related
to executive control and emotion regulation interferes with inhibition
of unwanted drug seeking behavior. Finally, a number of studies
suggest that abnormal cerebellar structure may partially characterize
the genetic risk for alcoholism [23-27]. Although the cerebellum
has been acknowledged as being impaired by addiction, its role in
the maintenance of addiction has received relatively little attention.
Moreover, no developmental studies of the CNS predispositions and
consequences of addiction in adolescents have included a focus on the
cerebellum.

Critical barriers to studying the cerebellum

Despite the accumulating evidence that cerebellar damage is likely
important in alcohol and other substance use disorders, very few human
neuroimaging studies have included a focus on the cerebellum, in part
due to the paucity and limitations of automated cerebellar segmentation
algorithms. The cerebellar anatomy has foliations narrower than
the resolution of standard 1 mm isovoxel T1-weighted MR Images,
indistinct lateral vermis boundaries, and close proximity to the base
of the skull (with its attendant image contrast nonuniformities), all
of which pose challenges for automated segmentation algorithms. As
a result, many initial human cerebellar imaging studies in addiction
used manual tracings to measure cerebellar volumes [18,26,28]. With
the wide availability of MRIs and the development of relatively fast
MRI structural imaging sequences, the need for high output tools
for cerebellar measurement has become acute. Owing to the growing
awareness of the importance of the cerebellum in development and
disease, there has been a recent drive to solve the challenge of segmenting
the cerebellum into its constituent components [29,30]. Our laboratory
has spent the last five years developing software for automated, reliable,
and valid delineation of the complex morphometry of the cerebellum.
Initially, using Bayesian Active Appearance Modelling (AAM) [31]
we developed a five-parcel cerebellar segmentation with outstanding
reliability and validity [32]. We also applied the 5-parcel delineation to
Prenatal Alcohol Exposed (PAE) and control children, demonstrating
cerebellar findings in PAE that existed beyond the frequently observed
general pattern of microcephaly [33]. We recently extended this AAM
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approach to 29-parcel cerebellar segmentation. Below, we describe
the 29-parcel segmentation implementation, present its reliability and
validity and apply it to the PAE data above [33], showing where in the
cerebellar hemispheres and vermis the PAE effects are the largest.

Materials and methods

Segmentation of MR brain images into anatomical regions is one
of the most difficult tasks in image processing. Many techniques exist
to divide a medical image into regions with similar properties such
as gray level, color, texture, brightness and contrast, or to partition an
image based on abrupt changes in intensity, such as edges.

Background

Early techniques based on gray level features such as histogram
thresholding, edge based segmentation, and region based segmentation
generally did not perform well on brain images with complex anatomy
[34]. As noted above, segmentation of the cerebellum is especially
challenging, because the cerebellar foliations are narrower than 0.5
mm. This results in extensive partial volume effects at the standard 1
mm?® resolution of T1-weighted images. Therefore, any segmentation
method that seeks to delineate more than the outer cerebellar boundary
must be able to leverage strong prior assumptions about local shape
and image intensity, as well as relative dependencies or landmarks that
human experts use to infer object boundaries in medical images. The
most popular methods for medical image segmentation are atlas based
approaches that seek to deform known template images with associated
labels (atlas) so as to match with novel subject images thereby allowing
a label mapping to be established. An example of this is FreeSurfer
[35], which is widely used and among other workflows, uses nonlinear
template registration to align subject images to a stereotaxic atlas. Atlas
based segmentation relies on appropriate atlas formation and selection,
and accurate registration (alignment) of the atlas to the image to be
segmented. Early brain atlases were based on a single individual, such
as the Talairach atlas [36], and failed to adequately reflect anatomic
variability. Other atlases derived from averaging multiple brain images
after affine normalization (i.e., correcting for translation, rotation,
scale, and shear), resulted in blurry templates [37,38]. The utility of
such atlases for defining anatomic structures and propagating them
to individual images (i.e. atlas-based segmentation) was limited,
as the spatial uncertainty of blurry atlases caused co-registration
problems, even with high-parameter volume registration methods,
that degraded label propagation accuracy. Aligning an image with
an atlas typically comprises deforming the atlas template volume so
as to minimize differences between the template and the new image.
Initial deformation normally uses a linear transformation to account
for gross rigid differences (i.e. a similarity or affine transformation),
after which a non-linear deformation introduces more flexibility in
order to account for the remaining differences. A difficulty with the
latter process is balancing the number of degrees of freedom of the
parameterization for deformation with regularization and smoothness
constraints. A number of methods [39-42] have been proposed towards
providing reliable non-rigid deformation for achieving accurate
template alignment. However, while methods continue to improve for
the cortical regions, to-date none of these approaches have been able to
reliably align detailed structures such as cerebellar lobules. Some work
[43] has shown improved results when combining registered output
with machine learning techniques, such as training a Support Vector
Machine to classify the final output labels instead of using the maximum
atlas probability map directly. More recently, there has also been
significant growth in application of Convolutional Neural Networks
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to brain imaging, such as tissue classification, identification of tumors,
and even tackling semantic segmentation [44-46]. However, again
while this is an active area of research, reliable detailed delineation for
intricate structures like cerebellar foliations has not yet been achieved.

An alternative to deforming the entire volume of a template for
obtaining alignment is to only deform surface boundaries (another
prevalent category of 3D segmentation methods), which encompasses
deformable models such as active contours and surfaces [47,48].
Restricting deformation to a surface manifold instead of a volume has
the benefit of a lower parametrization complexity and allows intuitive
features such as shape to be modeled explicitly. This comes at the expense
of losing the ability to map voxels within a boundary between template
and subject, i.e. it is only possible to determine whether a particular
voxel falls inside or outside the boundary, but there is no precise
correspondence of that voxel between aligned images since no internal
deformation warp has been defined. In the context of segmentation
for the purpose of localizing a region and measuring volume, this
limitation is irrelevant. In fact, for volumetric measurement surface
based methods offer a direct approach, and greater resilience against
quantization error since sub-voxel estimates can be made by exact
integration of the polyhedral surface.

Active appearance models

Extending the aforementioned advantages of surface based
segmentation, Active Shape Models (ASM) [49,50] and Active
Appearance Models (AAM) [49-51] provide a framework for learning
statistical surface shape and intensity models from labeled data and
adapting these models to new images. This approach is therefore well-
aligned to the requirements of cerebellar segmentation, which is highly
sensitive to shape and local intensity distributions. We adopted the
Bayesian Active Appearance Modeling (AAM) formulation [31] in our
implementation of our 5-parcel Cerebellar Analysis Tool Kit (CATK)
[32]. The AAM is trained from hand-labeled T1-weighted examples
(Neuromorphometrics, Inc.) derived from healthy participants, and
uses a Point Distribution Model (PDM) [49-50] to represent shape and
intensity variation at the volume’s borders. The model is constructed
by co-registering [52,53] the hand-labeled surfaces, and generating
mesh models with vertex correspondence across the set of training
subjects. Eigen decomposition under the assumption of a multivariate
Student Distribution produces a linear subspace that describes the
characteristic modes of shape variation. Similarly, a similar process can
be applied to sampled intensity profiles taken normal to each surface
vertex to produce a linear subspace describing the characteristic modes
of intensity variation. Linear combinations of the mode vectors allow
the model to interpolate the gamut of variation seen in the training data
while also enforcing probabilistic priors.

An obvious concern is that the AAM model can suffer from
inflexibility and fail to provide adequate freedom to account for unseen
variation (which is more appropriately handled by some non-rigid
voxel methods); however, within the cerebellum we have observed
limited variability from the average shape, especially with respect
to localized sub-regions. Furthermore, we maintain that the AAM
offers a better trade-off between flexibility and parameter smoothness
because the parameterization is not arbitrary, but rather is tailored
specifically (through statistical modeling) to the cerebellar structure.
Another advantage of the AAM approach is that the inter-relationship
between shape and intensity is modeled and used to drive the fitting
process, while atlas-based approaches are limited to intensity similarity
and assumed parameter smoothness. More specifically: although the
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atlas itself offers structural priors, this information is not generally
used to guide fitting. We have found that this difference causes AAM
fitting to be more robust since worst-case errors still maintain likely
parameterization, while atlas-based methods can fail spectacularly, if
the initial conditions are suboptimal.

Extending CATK to 29 cerebellar parcels

Our original implementation of CATK demonstrated reliable and
valid delineation on 5 cerebellar parcels: two cerebellar hemispheres
and three vermal lobes (anterior: vermis lobules I-V, superior-
posterior: vermis lobules VI-VII, and inferior-posterior: vermis lobules
VIII-X). Validity of the method was attained by comparing volume
and dice overlap measures (from non-training images) to the expert
manual delineations provided by Neuromorphometrics (NMI); the
gold standard for structural image analysis tools. Comparison with
SUIT toolbox for SPM [29] (an atlas-based method) showed that
CATK offers superior test-retest reliability (ICCs of 0.95 versus 0.62) on
repeat scans from 20 subjects and better agreement with expert hand
delineations [32].

Subsequently, we have extended this approach to 29 cerebellar
parcels (CATK2). While the underlying labeling protocol is actually
based on 32 parcels (Figure 2), a reduction to 29 parcels was ultimately
adopted due to some very small structures being found to be unreliable
from both the manual and automatic labeling perspectives. Specifically,
in the vermis we merge Crus I, Crus II, VIIb (referred to as VIIcab), and
VIIIa and VIIIb (referred to as VIIIab). In order to address the physical
barriers of delineating submillimeter cerebellar foliations, new high
resolution 0.7 mm? training data was acquired using prospective motion
tracking and correction. This enabled us to acquire high-quality T1-
weighted images from both controls and alcoholics suitable for manual
labeling (and ultimately machine learning) that would otherwise have
been heavily degraded due to micro-movements of subjects in the
scanner and higher partial volume effects due to the longer scan time
required for higher resolution images.

A total of 63 high-resolution motion-corrected images from 38

B reft 1-1V B Left Crusiz B Left IX
B vVermis I-IV B vermis CrusII Vermis IX
M Right 1I-1IV B Right Crusit [ Right IX
B Left V B Left VIIb B reft X
B vermis V Vermis VIIb Hl vermis X
M Right Vv M Right VIIb B Right X
B Left VI B Left VIIIa B 1eft WM
B vermis VI B vermis VIIIa Right WM
B Right VI B Right VIIIa
B Left CrusI B Left VIIIb

Vermis CrusI Vermis VIIIb
M Right CrusI M Right VIIIb

Figure 2. CATK2 parcellation map
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subjects (alcoholics and controls, men and woman) were collected
for modeling, with 25 subjects having same-day repeat sessions that
are used to assess reliability of both manual and automated methods.
Expert manual labeling, based on the parcellation scheme shown in
Figure 2, were generated for these subjects by NMI using advanced
interactive landmarking tools that they specifically developed for this
detailed cerebellar delineation.

The processing pipeline for CATK2 (Figure 3) is more extensive
than the original 5-parcel system, and employs a hierarchical modeling
approach that applies a coarse-to-fine methodology. Multiple AAM’s
have been constructed that target the: whole cerebellum, white matter
portions, hemisphere lobules, and vermal lobules, with vertex density
progressively increasing at each level. Processing is divided into 3
stages: (1) image registration and initial alignment, (2) application of
a hierarchical array of appearance models, and (3) post-processing for
refining the output labels. The pipeline also incorporates the ability to
use multiple templates for registration which enables multiple starting
points for fitting.

Registration and alignment

Initial registration is necessary (for both training and fitting) to
remove common rigid variation (translation, scale and orientation)
between subjects that does not contribute to inter-subject shape
differences. For 0.7 mm® motion-corrected images, which have
improved detail, CATK2 uses multiple templates with 3D-SIFT (an
extension to the 2D Scale Invariant Feature Transform) [42] as the
registration engine, while linear registration with ANTS (Advanced
Normalization Tools) [54] is used for conventional 1 mm® images.
When using the multi-template approach, T1 images from the AAM
training set are used as templates (where the median alignment taken),
whereas the MNI-152 0.5 mm® T1 template is used in the single-
template. Both cases use a 9 parameter (rotation, translation and scale
for each axis) rigid linear transform.

Given two images to be registered, 3D-SIFT proceeds by applying
feature extraction to each image, which identifies distinct interest points
and generates normalized descriptors for each point. Nearest-neighbor
matching is used to identify candidate correspondences across the
images, and RANSAC (Random Sample Consensus) is applied in
order to determine the largest subset of matches that is consistent with
a similarity transform. Rotational invariance is provided through the
structure tensor.

Active appearance models

Active Shape Models (ASM) [49,50] and Active Appearance
Models (AAM) [50] encapsulate variation from real examples and
restrict the search space to linear combinations of these examples. The
key distinction between the two is that AAMs also explicitly models
image intensity (in addition to shape) and allow adaptation to take
advantage of the interrelationships between shape and intensity. The
capture region refers to a zone which encompasses the set of solutions
that converge to the target object. As such models that are initialized
close to the capture region generally have a high convergence rate;
hence large capture regions are desirable. CATK2 uses both ASM and
AAM under a Bayesian formulation [31]. The former provides a larger
capture region, which allows the initial starting point to converge more
reliably, while the latter offers better estimation in the presence of noise
due to its joint prior.

Models are generated by extracting 3D surfaces from the
manual label volumes (where each voxel is associated with a specific

Volume 5: 4-10



Price M (2020) Automated 29-parcel cerebellar segmentation and application to prenatal alcohol exposed children and controls

REGISTRATION

Multi-template

e SIFT Alignment /
ANTS

Input Image

POST-PROCESSING

Output Labeling

Allocate

ACTIVE APPEARANCE MODELING

Fit Cerebellar
Exterior

Refine Vermis as
Group

Fit Cerebellar
White Matter

Fit Cerebellar
Substructures as
Group

Iterative
Substructure
Refinement

Voxelize Parcel

Unclassified
Interlobule Voxels

Meshes

Figure 3. CATK?2 processing pipeline

cerebellar parcel) and applying the training procedure. Each surface is
parameterized by a triangular mesh that this generated using Marching
Tetrahedra (MT) [55] to extract the iso-surface from the underlying
volume. Iterative decimation is used to simplify each mesh while
ensuring that the residual error does not stray below 1 voxel. Next an
average mesh is generated by aligning the input meshes to a common
space, filling the volume and extracting a mesh surface using the same
procedure as before. We use fast marching [56] to uniformly resample
the average mesh to several resolutions as appropriate for our modeling
hierarchy (typically 200 vertices for most small parcels, and 500 to 1000
vertices for larger parcels like the hemispheres or cerebellar exterior).
The average meshes are then iteratively deformed to match each original
subject mesh resulting in a set of meshes for each parcel and resolution
that achieve point correspondence between the training subjects. Figure
4 shows the output of this procedure that produces multi-resolution
corresponding surface models using various label grouping schemes.

Once correspondences are established, statistical shape (and
intensity) models are computed by treating each mesh as a column vector
and concatenating subjects into a data matrix. For intensity models,
linear profiles normal to the surface at each vertex are sampled [32,57].
Eigen decomposition of the data matrix yields a low-dimensional
parameter space that represents the most common modes of variation.
Parcels can be jointly modeled in this way or modeled relative to one-
another in order to boost modeling precision for a specific area; CATK2
uses a full joint model followed by a series of individual conditional
model refinements.

Model fitting

CATK?2 uses a 3-stage fitting process: First, an ASM with zero
maximum standard deviation is applied. This amounts to disabling
shape adaptation but allowing 3D translation and overall scale to be
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Figure 4. Average CATK2 models for 4 parcel groupings and 2 mesh resolutions: 100
vertices (top) and 800 vertices per surface (bottom)

adjusted, and acts as a pre-tuning step to account for minor offsets
introduced by registration. Second, the ASM limits are removed and the
model is allowed to adapt: ASM fitting comprises searching for intensity
profile matches normal to the surface using 1D gradient correlation
and selecting the shape mode parameters whose surface is closest to
these matches. In this way we can adapt the model vertices towards
proposed candidate locations where the intensity profile is consistent
with the model, but retain smoothness by selecting the closest shape in
the modeled subspace. Finally, we activate the full AAM that is driven
by an optimization process (L-BFGS: Limited Memory Broyden-
Fletcher-Goldfarb-Shanno) where the shape parameters are adjusted
and the objective error function is the posterior likelihood function of
the conditional distribution between intensity on shape.

For hierarchical fitting, successive stages are initialized by
optimizing the shape parameters for the next stage using the conditional
distribution between the prior and latter shape models. For example,
when moving from cerebellar exterior fitting stage to lobule fitting stage,
we maximize the likelihood of lobule shape parameters conditioned on
the current exterior shape and intensity from the first stage.
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Post-processing

After model fitting, a fitted 3D surface is defined for each output
label region, and is converted to an output label map by voxelizing
(filling) each fitted mesh and applying its contributing label. Owing
to quantization errors introduced by the close proximity of lobule
meshes and the voxelization process, some voxels between lobules can
be excluded for label generation. Therefore, we use the fitted exterior
cerebellar model as a bounding surface to locate missed voxels that fall
between the interior lobule mesh surfaces. Finally, we classify interior
voxels as being part of the cerebellum or CSF by thresholding the
intensity. The threshold is determined using a ratiometric analysis of
the intensity range over the image and the distribution of intensities
falling inside the parcel. CSF voxels are suppressed and unlabeled non-
CSF voxels are allocated to their closest parcel.

Results

Below we present some reliability validity results for the method
and a beginning application of the method to children with prenatal
alcohol exposure from control children.

Validation and reliability

CATK?2 was developed using images from 38 adult subjects from
a larger study on the long-term effects of alcohol. Twenty-five subjects
had same day repeat scans (with the subject exiting the scanner between
scans), and the agreement between these scans was used to estimate
the reliability of both manual labeling and our automated method.
The reliability estimates thus includes partial volume effects (resulting
from sub-voxel variability in subject positioning and variability in
tissue vs. voxel boundaries). Each study consisted of two 0.7 mm® T1
motion-corrected studies, one 1 mm® T1 motion-corrected study, and
one 1 mm® T1 non-motion corrected study. Table 1 shows intraclass
correlations (ICC) and dice overlap scores between CATK2 and the
manual labelings for major cerebellar groupings. Owing to the small
number of labeled subjects and the requirements on sufficient data to
generate a viable AAM, only leave-one-out evaluation was feasible.

Test-retest scores refer to ICC’s computed between repeat scans for
each method (Manual or CATK2), while validity scores are computed
comparing manual labelling to CATK2 results. Dice Overlap [58]
measures the spatial overlap between two discrete segmentations
by measuring the proportion of voxels that have the same label as a
percentage of the total masked volume. (All validity comparisons are
based on the set of 0.7 mm® motion corrected images which were
selected for manual labeling.)

Table 1. Comparison of CATK2 and Manual labelings for major cerebellar lobes

A similar comparison of reliability and validity for all 29 cerebellar
parcels is shown in Table 2. Generally, CATK2 shows excellent
repeatability when applied to multiple scans of the same subject as seen
in the high test-retest scores, which are similar, and typically higher,
than the scores for manual labeling. Dice overlap, which is calculated
as the mean across both test and re-test scans, also indicates fairly
consistent agreement with manual labelings. However, lower scores are
seen in cases of smaller parcels, and especially where poor agreement is
seen in the manual labels between test and re-test scans.

We also applied CATK2 to 37 unseen control and alcoholic subjects
from the study (not used for training or validation) to assess reliability
of the method on multiple image resolutions. Table 3 shows ICC scores
computed between each subject’s initial and follow-up scan for 0.7
mm? motion-corrected, ] mm? motion-corrected, and 1 mm? standard
studies respectively. The first column shows the overall agreement
across all image resolutions. This comparison shows that even though
CATK2 was trained on high-resolution motion-corrected image, the
models can be applied to standard resolution non motion-corrected
image with no noticeable impact on reliability.

Application of CATK2 to prenatally alcohol exposed and
control children

We previously applied the 5-parcel CATK to samples of prenatal
alcohol exposed and control children [33], which revealed new
findings relative to the effects of prenatal alcohol exposure on the brain.
Subsequently, we have now applied CATK2 to the same data, which
comprises two groups of children between 10 and 18 years of age: 13
children with histories of heavy prenatal alcohol exposure (PAE group)
and 9 non-exposed control children (NC group). Children were part
of a larger study of the behavioral teratogenicity of alcohol. Inclusion
required having English as the primary language, no history of head
trauma, serious medical condition, or MRI contraindications.

Inclusion in the PAE group required documented heavy maternal
alcohol consumption during pregnancy, defined as 4 or more alcoholic
drinks per single occasion at least once per week, or 14 or more drinks
per week on average. Whenever possible, exposure was confirmed
using medical history, birth records, social services records, or maternal
report. However, direct maternal report was not common as many of
these children no longer resided with their biological families. Thus,
precise details about alcohol consumption (i.e., dose and timing)
were often unavailable. In these cases, mothers were reported to be
alcoholic or alcohol abusing or dependent in pregnancy. In addition
to psychometric testing and questionnaire screening, a diagnosis of

GROUPING INTRACLASS CORRELATION DICE
Test-Retest Reliability Validity Dice Overlap
Manual CATK2 Manual vs. CATK2 Manual vs CATK2
Whole Cerebellum 0.9577 0.9772 0.8957 0.93
Left Hemisphere 0.9454 0.9696 0.8723 0.89
Right Hemisphere 0.9475 0.9724 0.8759 0.89
Vermis 0.914 0.9768 0.7976 0.83
Corpus Medullare 0.7386 0.8687 0.5052 0.85
Anterior Lobe (I-V) 0.9347 0.8014 0.5273 0.78
Superior Posterior Lobe (VI-VII) 0.8449 0.9636 0.7775 0.89
Inferior Posterior Lobe (VIII-IX) 0.6817 0.948 0.6473 0.85
Flocculonodular Lobe (X) 0.6398 0.8564 0.4071 0.6
Vermis I-V 0.8662 0.9645 0.7721 0.8
Vermis VI-VII 0.8208 0.9497 0.693 0.77
Vermis VIII-X 0.9454 0.9154 0.6544 0.79
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FAS was determined by Dr. Kenneth Lyons Jones, a dysmorphologist,
using a standardized assessment [59,60]. FAS was diagnosed in the
presence of structural abnormality (i.e., two or more of the following
facial features: short palpebral fissure length, smooth philtrum, thin
vermillion border) and either growth deficiency (height or weight
is < 10™ normative percentile) or microcephaly (occipital-frontal
circumference is < 10" normative percentile).

Based on this screening process, 6 alcohol-exposed children
received a diagnosis of FAS.

Table 2. Comparison of CATK?2 and Manual labelings for each parcel

Children in the NC group were excluded if greater than minimal
prenatal alcohol exposure was reported. Figure 5 shows coronal and
sagittal sections from two PAE and two control subjects, with CATK2
parcel labels, illustrating the qualitatively good fits.

Figure 6 shows the comparison between PAE and control
adolescents for each of the CATK2 parcels with significant results
indicated in green. For the hemispheres it shows lower cerebellar
volumes. We found lower volumes for PAE vs. controls for left and right
corpus medullare, CrusI and VIIb and for left VI, with a trend in the

PARCEL INTRACLASS CORRELATION DICE
Test-Retest Reliability Validity Dice Overlap
Manual CATK2 Manual with CATK2 Manual vs CATK2

1 Left -1V 0.7134 0.8892 0.3083 0.62
2 Right I-IV 0.7601 0.7816 0.2773 0.68
3 Left V 0.5810 0.5209 0.2102 0.62
4 Right V 0.7886 0.6810 0.2509 0.65
5 Left VI 0.8497 0.8491 0.4206 0.78
6 Right VI 0.9558 0.9038 0.5905 0.78
7 Left Crusl 0.5812 0.9447 0.5348 0.82
8 Right Crusl 0.9423 0.9207 0.7812 0.82
9 Left CruslI 0.2432 0.7836 0.3892 0.77
10 Right CrusII 0.4416 0.9156 0.4125 0.77
11 Left VIIb 0.5614 0.5923 0.2850 0.57
12 Right VIIb 0.8506 0.8678 0.5160 0.65
13 Left VIIIa 0.4923 0.7749 0.3195 0.60
14 Right VIIIa 0.6903 0.9706 0.4845 0.70
15 Left VIIIb 0.3068 0.6582 0.2458 0.69
16 Right VIIIb 0.2938 0.9301 0.3756 0.74
17 Left IX 0.9801 0.9209 0.7653 0.78
18 Right IX 0.9663 0.8693 0.6392 0.79
19 Left X 0.6585 0.8299 0.3829 0.57
20 Right X 0.5268 0.8097 0.4132 0.59
21 Vermis [-IV 0.8300 0.8757 0.6838 0.81
22 Vermis V 0.7208 0.6856 0.5205 0.72
23 Vermis VI 0.7271 0.9128 0.7295 0.73
24 Vermis VIIcab 0.6394 0.8187 0.4759 0.69
25 Vermis VIIIab 0.8921 0.8786 0.5844 0.77
26 Vermis IX 0.8334 0.8018 0.5933 0.76
27 Vermis X 0.7612 0.8882 0.5585 0.66
28 Right Corpus Medullare 0.7252 0.8660 0.5000 0.86
29 Left Corpus Medullare 0.7471 0.8626 0.5029 0.85

Figure 5. Coronal and sagittal sections from two PAE and two controls, with CATK2 parcel labels showing good fidelity of the CATK?2 fits
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Table 3. CATK2 reliability for first and follow up visits applied to different image resolutions

PARCEL INTRACLASS CORRELATION CATK?2 Visitl vs Visit2

ALL 0.7mm* MOCO Imm* MOCO Imm®

1 Left I-IV 0.9277 0.9069 0.9617 0.9708

2 Right I-IV 0.9544 0.9619 0.9716 0.9743
3 Left V 0.9480 0.9368 0.9740 0.9707
4 Right V 0.9375 0.9171 0.9721 0.9426
5 Left VI 0.9453 0.9223 0.9560 0.9587

6 Right VI 0.9575 0.9295 0.9599 0.9657
7 Left Crusl 0.9549 0.9392 0.9637 0.9776
8 Right Crusl 0.9624 0.9394 0.9692 0.9737

9 Left Crusll 0.9505 0.9368 0.9760 0.9530
10 Right CruslI 0.9587 0.9655 0.9697 0.9541
11 Left VIIb 0.9122 0.8688 0.9411 0.9132
12 Right VIIb 0.9345 0.9347 0.9423 0.9448
13 Left VIIIa 0.9260 0.8865 0.9295 0.9390
14 Right VIIIa 0.9639 0.9463 0.9695 0.9692
15 Left VIIIb 0.9002 0.8395 0.8824 0.9228
16 Right VIIIb 0.9483 0.9085 0.9558 0.9755
17 Left IX 0.9607 0.9523 0.9783 0.9689
18 Right IX 0.9662 0.9621 0.9775 0.9734
19 Left X 09111 0.8818 0.9190 0.9056
20 Right X 0.9227 0.9317 0.9503 0.9367
21 Vermis I-IV 0.9470 0.9656 0.9683 0.9785
22 Vermis V 0.9166 0.9431 0.9526 0.9604
23 Vermis VI 0.9642 0.9470 0.9802 0.9745
24 Vermis VIIcab 0.9053 0.8637 0.9197 0.9423
25 Vermis VIIIab 0.9439 0.9544 0.9708 0.9604
26 Vermis IX 0.9339 0.9455 0.9525 0.9510
27 Vermis X 0.9012 0.9283 0.9423 0.9520
28 Right Corpus Medullare 0.9572 0.9480 0.9578 0.9640
29 Left Corpus Medullare 0.9581 0.9524 0.9602 0.9663
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Figure 6. Comparison of CATK2 measures on 9 controls and 11 subjects with PAE

same direction for right VI. For the vermis, PAE had lower volumes for
lobe V, with trends for reduced volumes for VIIIab and I-IV. The results
provide insightful findings regarding the particulars of cerebellum
involvement in the consequences of prenatal alcohol use and abuse and
the behavioral phenomena seen in children with PAE.
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Discussion

Left Corpus Medullare

Since CATK2 models learn intrinsic features from manual labels,
its reliability and validity is by definition limited by the reliability of
the hand delineation of the cerebellar parcels. The reliability of the
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measure is essentially a ratio of the average variability within subjects
of the estimates to the variability of the true measures across subjects
on whom the assessment of reliability is performed. For example,
where the reliability assessment performed on a group that included
individuals with known cerebellar anomalies, the reliability would
have been greater. This might have been related to the power of
CATK?2 to separate the PAE from normal children given the known
differences between the groups, hence the larger denominator of the
reliability ratio. The PAE results presented here are interesting in that
the cerebellar segmentations show where in the cerebellar vermis and
hemispheres the PAE effects are present. Reduced cerebellar volumes
in PAE children are evident in regions involved in i-RISA component
functions. Additionally, we show that the lower volume in the anterior
superior vermis is specific to lobule V, and that PAE show reduced
bilateral corpus medullare volumes. This may be associated with such
children showing difficulty with executive control functions. However,
the import of these results is tempered by the small sample sizes studied
and the fact that actual alcohol use in the PAE sample was not studied.

Conclusion

We have presented a 29-parcel automated cerebellar segmentation
algorithm (CATK2) based on hierarchical Bayesian Active Appearance
Models. CATK2 was trained on 38 0.7 mm® motion-corrected T1-
weighted images that were manually labelled by Neuromorphometrics,
Inc.

The method performs an image registration between the image
under consideration and template images, followed by the application
of a hierarchical series of appearance models, and finally applies post-
processing to generate voxel-wise label map of the underlying cerebellar
lobules. The use of multiple pre-registration frameworks is possible:
CATK2 uses 3D-SIFT and RANSAC for multi-template alignment, and
also an alternative pipeline using ANTS for pre-alignment, which can
be used for lower-resolution images that do not produce sufficient SIFT
features.

Owing to the small number of unique subjects in the training data,
leave-one-out validation was selected as the evaluation technique for
assessing reliability and validity. CATK2 shows excellent repeatability
in terms of test re-test ICC computed across multiple studies of the
same subject. Promising results are also seen in the overall agreement
between CATK2 and the manual labeled data in terms of dice overlap
comparison. However, lower scores in ICC validity comparisons are
seen due to the small volumes intrinsic to the use of a very detailed
parcellation protocol. In addition, this is partially due to the lower
agreement between the test re-test scans of the manual labelings
which are used for training. Comparison of CATK2 ICCs for several
image resolutions negligible loss of CATK2 test-retest reliability when
applying CATK2 high-resolution models to standard resolution non
motion-corrected data. Finally, when applied to samples of prenatal
alcohol exposed and control children, CATK2 provided more precise
analysis of where within the cerebellar the effects of prenatal alcohol
exposure are evident [33].
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