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Introduction
The cerebellum is a key region for integration of information for 

both motor and non-motor functions, and cerebellar abnormalities 
may underlie some of the sensory-motor, cognitive, and emotional 
deficits observed in many disorders, including alcoholism and other 
addictions. 

Cerebellar structure and connectivity

The cerebellum receives extensive afferent input from prefrontal 
and association cortices relayed via pontine nuclei. Rs-fMRI 
demonstrates cerebellar involvement in neocortical functional 
networks, and cerebellar activation with a variety of cognitive and 
affective brain functions, including those related to addiction (i.e., 
insight, reward, motivational drive, saliency, and inhibitory control). 
The cerebellum has an outer cortical gray matter layer, with an inner 
layer of white matter scaffolding. Input is received through two major 
brainstem afferent relays (Figure 1), the inferior olive and the pontine 
nuclei, via climbing fiber (through the inferior cerebellar peduncle) 
and mossy fiber (through the inferior cerebellar peduncle) pathways. 
Both pathways relay cortical inputs (including from non-motor cortical 
regions) to the cerebellum [1,2]. Given its highly uniform neuronal 
structure, the cerebellum has been hypothesized to have a single 
generalizable function [3-5] – modulating and optimizing activation 
in different domains depending on the cerebral inputs the cerebellar 
region receives. This theory suggests that the cerebellum acts as an 
oscillation dampener, optimizing performance by modulating behavior 
and affect according to context. For example, the cerebellum may 
modulate emotional processes by integrating positive and negative 
affective inputs in the same way that it modulates fine motor control by 
integrating sensory inputs. 

A feedforward loop of the cerebrocerebellar circuit is comprised of 
projections from the prefrontal cortex to the pons, followed by projections 
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from the pons to the cerebellum (i.e., the corticopontocerebellar 
system). The feedback loop of this circuit is comprised of cerebellum 
projections to the premotor and prefrontal cortices via the thalamus 
(i.e., the cerebellothalamocortical system). Volume shrinkage of any 
nodes within these cerebrocerebellar circuits, or white matter damage 
to any of the connecting fibers, may underlie cognitive, affective, and 
motor deficits of functions that require cerebellar involvement for 
optimum performance. 

Cognitive function and the cerebellum

Many cognitive tasks that require prefrontal cortex also involve 
the cerebellum. Diamond [6] reviewed the literature showing the close 
interrelationship of motor, cognitive, and affective development and 
also the lockstep development of the neocerebellum and dorsolateral 
and dorsomedial prefrontal cortex. (i.e., most cognitive and emotional 
tasks involving dorsolateral or dorsomedial prefrontal cortex also 
involve the neocerebellum). fMRI studies show that the cerebellum and 
prefrontal cortex co-participate when tasks are: a) difficult, b) novel vs. 
familiar and practiced, c) unstable, d) require speed, and e) in general, 
are unable to operate on automatic pilot. Lesions in prefrontal cortex 
are often associated with contralateral cerebellar hypometabolism and 
neocerebellar lesions can be associated with frontal hypometabolism. 
The protracted duration of prefrontal maturation is well appreciated, 
while the similarly protracted period of neocerebellar maturation 
is relatively ignored or only newly appreciated. This is true despite 
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numerous studies showing close coactivation of the neocerebellum with 
dorsolateral or dorsomedial prefrontal cortex during cognitive tasks. 
When prefrontal activation is increased or decreased, corresponding 
increases or decreases in activation of contralateral cerebellar cortex 
are observed. Using rudimentary measurements of cerebellar, pontine, 
thalamic, and cortical volumes, it has been shown that disruption of the 
corticopontocerebellar and cerebellothalamocortical systems is related 
to cognitive deficits in alcoholism [7]. This short review suggests that a 
full understanding of role of the prefrontal cortex in the development 
of alcoholism and other addictions could only be fully appreciated if 
cerebellar involvement is studied in the same cohorts as the cerebrum.

The cerebellum’s role, as a modulator, fits in nicely with existing 
models of addiction. The iRISA (Impaired Response Inhibition and 
Salience Attribution) four-circuit model of addiction [8-10] provides a 
framework for the cerebellum’s possible role. The iRISA model consists 
of inter-connected circuits for memory, reward/saliency, executive 
control, and motivation/drive. Behavior in response to potential 
rewards is mediated by interactions among these four circuits. In the 
actively addicted brain, the appetitive drive components of these circuits 
are amplified, while the inhibitory control and emotion regulation 
components are diminished [11]. A model for the cerebellum’s role in 
addiction is that it is influential in maintaining the homeostatic balance 
of the iRISA circuits [12]. 

Neuroimaging research in addiction [7,13-18] implicates cerebellar 
gray matter deficits in Lobule VI, VIIb, Crus I, Crus II, and the vermis 
in the cerebellum’s impaired ability to integrate activity across the iRISA 
component functions. In an analysis of functional connectivity in a 
large dataset of about one thousand healthy subjects, cerebellar regions 
were associated with multiple cerebral resting state networks. Lobules 
VI, VIIb, and Crus I were associated with dorsolateral and dorsomedial 
prefrontal cortex networks related to cognitive control [19], in 
agreement with other studies in smaller samples [12,20,21], and with 
tracer studies in non-human primates showing connections between 
these cerebellar and cerebral areas [22]. In the addicted brain, impaired 
modulation (inhibition) of brain circuits related to reward/salience, 
motivational drive, and memory results in an increased drive toward 

externalizing behavior, while disruption of reciprocal pathways related 
to executive control and emotion regulation interferes with inhibition 
of unwanted drug seeking behavior. Finally, a number of studies 
suggest that abnormal cerebellar structure may partially characterize 
the genetic risk for alcoholism [23-27]. Although the cerebellum 
has been acknowledged as being impaired by addiction, its role in 
the maintenance of addiction has received relatively little attention. 
Moreover, no developmental studies of the CNS predispositions and 
consequences of addiction in adolescents have included a focus on the 
cerebellum. 

Critical barriers to studying the cerebellum

Despite the accumulating evidence that cerebellar damage is likely 
important in alcohol and other substance use disorders, very few human 
neuroimaging studies have included a focus on the cerebellum, in part 
due to the paucity and limitations of automated cerebellar segmentation 
algorithms. The cerebellar anatomy has foliations narrower than 
the resolution of standard 1 mm isovoxel T1-weighted MR Images, 
indistinct lateral vermis boundaries, and close proximity to the base 
of the skull (with its attendant image contrast nonuniformities), all 
of which pose challenges for automated segmentation algorithms. As 
a result, many initial human cerebellar imaging studies in addiction 
used manual tracings to measure cerebellar volumes [18,26,28]. With 
the wide availability of MRIs and the development of relatively fast 
MRI structural imaging sequences, the need for high output tools 
for cerebellar measurement has become acute. Owing to the growing 
awareness of the importance of the cerebellum in development and 
disease, there has been a recent drive to solve the challenge of segmenting 
the cerebellum into its constituent components [29,30]. Our laboratory 
has spent the last five years developing software for automated, reliable, 
and valid delineation of the complex morphometry of the cerebellum. 
Initially, using Bayesian Active Appearance Modelling (AAM) [31] 
we developed a five-parcel cerebellar segmentation with outstanding 
reliability and validity [32]. We also applied the 5-parcel delineation to 
Prenatal Alcohol Exposed (PAE) and control children, demonstrating 
cerebellar findings in PAE that existed beyond the frequently observed 
general pattern of microcephaly [33]. We recently extended this AAM 

Figure 1. Schematic of the cerebellar circuitry
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approach to 29-parcel cerebellar segmentation. Below, we describe 
the 29-parcel segmentation implementation, present its reliability and 
validity and apply it to the PAE data above [33], showing where in the 
cerebellar hemispheres and vermis the PAE effects are the largest. 

Materials and methods
Segmentation of MR brain images into anatomical regions is one 

of the most difficult tasks in image processing. Many techniques exist  
to divide a medical image into regions with similar properties such 
as gray level, color, texture, brightness and contrast, or to partition an 
image based on abrupt changes in intensity, such as edges.

Background

Early techniques based on gray level features such as histogram 
thresholding, edge based segmentation, and region based segmentation 
generally did not perform well on brain images with complex anatomy 
[34]. As noted above, segmentation of the cerebellum is especially 
challenging, because the cerebellar foliations are narrower than 0.5 
mm. This results in extensive partial volume effects at the standard 1 
mm3 resolution of T1-weighted images. Therefore, any segmentation 
method that seeks to delineate more than the outer cerebellar boundary 
must be able to leverage strong prior assumptions about local shape 
and image intensity, as well as relative dependencies or landmarks that 
human experts use to infer object boundaries in medical images. The 
most popular methods for medical image segmentation are atlas based 
approaches that seek to deform known template images with associated 
labels (atlas) so as to match with novel subject images thereby allowing 
a label mapping to be established. An example of this is FreeSurfer 
[35], which is widely used and among other workflows, uses nonlinear 
template registration to align subject images to a stereotaxic atlas. Atlas 
based segmentation relies on appropriate atlas formation and selection, 
and accurate registration (alignment) of the atlas to the image to be 
segmented. Early brain atlases were based on a single individual, such 
as the Talairach atlas [36], and failed to adequately reflect anatomic 
variability. Other atlases derived from averaging multiple brain images 
after affine normalization (i.e., correcting for translation, rotation, 
scale, and shear), resulted in blurry templates [37,38]. The utility of 
such atlases for defining anatomic structures and propagating them 
to individual images (i.e. atlas-based segmentation) was limited, 
as the spatial uncertainty of blurry atlases caused co-registration 
problems, even with high-parameter volume registration methods, 
that degraded label propagation accuracy. Aligning an image with 
an atlas typically comprises deforming the atlas template volume so 
as to minimize differences between the template and the new image. 
Initial deformation normally uses a linear transformation to account 
for gross rigid differences (i.e. a similarity or affine transformation), 
after which a non-linear deformation introduces more flexibility in 
order to account for the remaining differences. A difficulty with the 
latter process is balancing the number of degrees of freedom of the 
parameterization for deformation with regularization and smoothness 
constraints. A number of methods [39-42] have been proposed towards 
providing reliable non-rigid deformation for achieving accurate 
template alignment. However, while methods continue to improve for 
the cortical regions, to-date none of these approaches have been able to 
reliably align detailed structures such as cerebellar lobules. Some work 
[43] has shown improved results when combining registered output 
with machine learning techniques, such as training a Support Vector 
Machine to classify the final output labels instead of using the maximum 
atlas probability map directly. More recently, there has also been 
significant growth in application of Convolutional Neural Networks 

to brain imaging, such as tissue classification, identification of tumors, 
and even tackling semantic segmentation [44-46]. However, again 
while this is an active area of research, reliable detailed delineation for 
intricate structures like cerebellar foliations has not yet been achieved.

An alternative to deforming the entire volume of a template for 
obtaining alignment is to only deform surface boundaries (another 
prevalent category of 3D segmentation methods), which encompasses 
deformable models such as active contours and surfaces [47,48]. 
Restricting deformation to a surface manifold instead of a volume has 
the benefit of a lower parametrization complexity and allows intuitive 
features such as shape to be modeled explicitly. This comes at the expense 
of losing the ability to map voxels within a boundary between template 
and subject, i.e. it is only possible to determine whether a particular 
voxel falls inside or outside the boundary, but there is no precise 
correspondence of that voxel between aligned images since no internal 
deformation warp has been defined. In the context of segmentation 
for the purpose of localizing a region and measuring volume, this 
limitation is irrelevant. In fact, for volumetric measurement surface 
based methods offer a direct approach, and greater resilience against 
quantization error since sub-voxel estimates can be made by exact 
integration of the polyhedral surface.

Active appearance models

Extending the aforementioned advantages of surface based 
segmentation, Active Shape Models (ASM) [49,50] and Active 
Appearance Models (AAM) [49-51] provide a framework for learning 
statistical surface shape and intensity models from labeled data and 
adapting these models to new images. This approach is therefore well-
aligned to the requirements of cerebellar segmentation, which is highly 
sensitive to shape and local intensity distributions. We adopted the 
Bayesian Active Appearance Modeling (AAM) formulation [31] in our 
implementation of our 5-parcel Cerebellar Analysis Tool Kit (CATK) 
[32]. The AAM is trained from hand-labeled T1-weighted examples 
(Neuromorphometrics, Inc.) derived from healthy participants, and 
uses a Point Distribution Model (PDM) [49-50] to represent shape and 
intensity variation at the volume’s borders. The model is constructed 
by co-registering [52,53] the hand-labeled surfaces, and generating 
mesh models with vertex correspondence across the set of training 
subjects. Eigen decomposition under the assumption of a multivariate 
Student Distribution produces a linear subspace that describes the 
characteristic modes of shape variation. Similarly, a similar process can 
be applied to sampled intensity profiles taken normal to each surface 
vertex to produce a linear subspace describing the characteristic modes 
of intensity variation. Linear combinations of the mode vectors allow 
the model to interpolate the gamut of variation seen in the training data 
while also enforcing probabilistic priors. 

An obvious concern is that the AAM model can suffer from 
inflexibility and fail to provide adequate freedom to account for unseen 
variation (which is more appropriately handled by some non-rigid 
voxel methods); however, within the cerebellum we have observed 
limited variability from the average shape, especially with respect 
to localized sub-regions. Furthermore, we maintain that the AAM 
offers a better trade-off between flexibility and parameter smoothness 
because the parameterization is not arbitrary, but rather is tailored 
specifically (through statistical modeling) to the cerebellar structure. 
Another advantage of the AAM approach is that the inter-relationship 
between shape and intensity is modeled and used to drive the fitting 
process, while atlas-based approaches are limited to intensity similarity 
and assumed parameter smoothness. More specifically: although the 
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atlas itself offers structural priors, this information is not generally 
used to guide fitting. We have found that this difference causes AAM 
fitting to be more robust since worst-case errors still maintain likely 
parameterization, while atlas-based methods can fail spectacularly, if 
the initial conditions are suboptimal.

Extending CATK to 29 cerebellar parcels

Our original implementation of CATK demonstrated reliable and 
valid delineation on 5 cerebellar parcels: two cerebellar hemispheres 
and three vermal lobes (anterior: vermis lobules I-V, superior-
posterior: vermis lobules VI-VII, and inferior-posterior: vermis lobules 
VIII-X). Validity of the method was attained by comparing volume 
and dice overlap measures (from non-training images) to the expert 
manual delineations provided by Neuromorphometrics (NMI); the 
gold standard for structural image analysis tools. Comparison with 
SUIT toolbox for SPM [29] (an atlas-based method) showed that 
CATK offers superior test-retest reliability (ICCs of 0.95 versus 0.62) on 
repeat scans from 20 subjects and better agreement with expert hand 
delineations [32]. 

Subsequently, we have extended this approach to 29 cerebellar 
parcels (CATK2). While the underlying labeling protocol is actually 
based on 32 parcels (Figure 2), a reduction to 29 parcels was ultimately 
adopted due to some very small structures being found to be unreliable 
from both the manual and automatic labeling perspectives. Specifically, 
in the vermis we merge Crus I, Crus II, VIIb (referred to as VIIcab), and 
VIIIa and VIIIb (referred to as VIIIab). In order to address the physical 
barriers of delineating submillimeter cerebellar foliations, new high 
resolution 0.7 mm3 training data was acquired using prospective motion 
tracking and correction. This enabled us to acquire high-quality T1-
weighted images from both controls and alcoholics suitable for manual 
labeling (and ultimately machine learning) that would otherwise have 
been heavily degraded due to micro-movements of subjects in the 
scanner and higher partial volume effects due to the longer scan time 
required for higher resolution images. 

A total of 63 high-resolution motion-corrected images from 38 

subjects (alcoholics and controls, men and woman) were collected 
for modeling, with 25 subjects having same-day repeat sessions that 
are used to assess reliability of both manual and automated methods. 
Expert manual labeling, based on the parcellation scheme shown in 
Figure 2, were generated for these subjects by NMI using advanced 
interactive landmarking tools that they specifically developed for this 
detailed cerebellar delineation. 

The processing pipeline for CATK2 (Figure 3) is more extensive 
than the original 5-parcel system, and employs a hierarchical modeling 
approach that applies a coarse-to-fine methodology. Multiple AAM’s 
have been constructed that target the: whole cerebellum, white matter 
portions, hemisphere lobules, and vermal lobules, with vertex density 
progressively increasing at each level. Processing is divided into 3 
stages: (1) image registration and initial alignment, (2) application of 
a hierarchical array of appearance models, and (3) post-processing for 
refining the output labels. The pipeline also incorporates the ability to 
use multiple templates for registration which enables multiple starting 
points for fitting. 

Registration and alignment

Initial registration is necessary (for both training and fitting) to 
remove common rigid variation (translation, scale and orientation) 
between subjects that does not contribute to inter-subject shape 
differences. For 0.7 mm3 motion-corrected images, which have 
improved detail, CATK2 uses multiple templates with 3D-SIFT (an 
extension to the 2D Scale Invariant Feature Transform) [42] as the 
registration engine, while linear registration with ANTS (Advanced 
Normalization Tools) [54] is used for conventional 1 mm3 images. 
When using the multi-template approach, T1 images from the AAM 
training set are used as templates (where the median alignment taken), 
whereas the MNI-152 0.5 mm3 T1 template is used in the single-
template. Both cases use a 9 parameter (rotation, translation and scale 
for each axis) rigid linear transform.

Given two images to be registered, 3D-SIFT proceeds by applying 
feature extraction to each image, which identifies distinct interest points 
and generates normalized descriptors for each point. Nearest-neighbor 
matching is used to identify candidate correspondences across the 
images, and RANSAC (Random Sample Consensus) is applied in 
order to determine the largest subset of matches that is consistent with 
a similarity transform. Rotational invariance is provided through the 
structure tensor. 

Active appearance models

Active Shape Models (ASM) [49,50] and Active Appearance 
Models (AAM) [50] encapsulate variation from real examples and 
restrict the search space to linear combinations of these examples. The 
key distinction between the two is that AAMs also explicitly models 
image intensity (in addition to shape) and allow adaptation to take 
advantage of the interrelationships between shape and intensity. The 
capture region refers to a zone which encompasses the set of solutions 
that converge to the target object. As such models that are initialized 
close to the capture region generally have a high convergence rate; 
hence large capture regions are desirable. CATK2 uses both ASM and 
AAM under a Bayesian formulation [31]. The former provides a larger 
capture region, which allows the initial starting point to converge more 
reliably, while the latter offers better estimation in the presence of noise 
due to its joint prior.

Models are generated by extracting 3D surfaces from the 
manual label volumes (where each voxel is associated with a specific Figure 2. CATK2 parcellation map
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cerebellar parcel) and applying the training procedure. Each surface is 
parameterized by a triangular mesh that this generated using Marching 
Tetrahedra (MT) [55] to extract the iso-surface from the underlying 
volume. Iterative decimation is used to simplify each mesh while 
ensuring that the residual error does not stray below 1 voxel. Next an 
average mesh is generated by aligning the input meshes to a common 
space, filling the volume and extracting a mesh surface using the same 
procedure as before. We use fast marching [56] to uniformly resample 
the average mesh to several resolutions as appropriate for our modeling 
hierarchy (typically 200 vertices for most small parcels, and 500 to 1000 
vertices for larger parcels like the hemispheres or cerebellar exterior). 
The average meshes are then iteratively deformed to match each original 
subject mesh resulting in a set of meshes for each parcel and resolution 
that achieve point correspondence between the training subjects. Figure 
4 shows the output of this procedure that produces multi-resolution 
corresponding surface models using various label grouping schemes. 

Once correspondences are established, statistical shape (and 
intensity) models are computed by treating each mesh as a column vector 
and concatenating subjects into a data matrix. For intensity models, 
linear profiles normal to the surface at each vertex are sampled [32,57]. 
Eigen decomposition of the data matrix yields a low-dimensional 
parameter space that represents the most common modes of variation. 
Parcels can be jointly modeled in this way or modeled relative to one-
another in order to boost modeling precision for a specific area; CATK2 
uses a full joint model followed by a series of individual conditional 
model refinements.

Model fitting

CATK2 uses a 3-stage fitting process: First, an ASM with zero 
maximum standard deviation is applied. This amounts to disabling 
shape adaptation but allowing 3D translation and overall scale to be 

adjusted, and acts as a pre-tuning step to account for minor offsets 
introduced by registration. Second, the ASM limits are removed and the 
model is allowed to adapt: ASM fitting comprises searching for intensity 
profile matches normal to the surface using 1D gradient correlation 
and selecting the shape mode parameters whose surface is closest to 
these matches. In this way we can adapt the model vertices towards 
proposed candidate locations where the intensity profile is consistent 
with the model, but retain smoothness by selecting the closest shape in 
the modeled subspace. Finally, we activate the full AAM that is driven 
by an optimization process (L-BFGS: Limited Memory Broyden-
Fletcher-Goldfarb-Shanno) where the shape parameters are adjusted 
and the objective error function is the posterior likelihood function of 
the conditional distribution between intensity on shape. 

For hierarchical fitting, successive stages are initialized by 
optimizing the shape parameters for the next stage using the conditional 
distribution between the prior and latter shape models. For example, 
when moving from cerebellar exterior fitting stage to lobule fitting stage, 
we maximize the likelihood of lobule shape parameters conditioned on 
the current exterior shape and intensity from the first stage.

Figure 3. CATK2 processing pipeline

Figure 4. Average CATK2 models for 4 parcel groupings and 2 mesh resolutions: 100 
vertices (top) and 800 vertices per surface (bottom)
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Post-processing

After model fitting, a fitted 3D surface is defined for each output 
label region, and is converted to an output label map by voxelizing 
(filling) each fitted mesh and applying its contributing label. Owing 
to quantization errors introduced by the close proximity of lobule 
meshes and the voxelization process, some voxels between lobules can 
be excluded for label generation. Therefore, we use the fitted exterior 
cerebellar model as a bounding surface to locate missed voxels that fall 
between the interior lobule mesh surfaces. Finally, we classify interior 
voxels as being part of the cerebellum or CSF by thresholding the 
intensity. The threshold is determined using a ratiometric analysis of 
the intensity range over the image and the distribution of intensities 
falling inside the parcel. CSF voxels are suppressed and unlabeled non-
CSF voxels are allocated to their closest parcel. 

Results
Below we present some reliability validity results for the method 

and a beginning application of the method to children with prenatal 
alcohol exposure from control children.

Validation and reliability
CATK2 was developed using images from 38 adult subjects from 

a larger study on the long-term effects of alcohol. Twenty-five subjects 
had same day repeat scans (with the subject exiting the scanner between 
scans), and the agreement between these scans was used to estimate 
the reliability of both manual labeling and our automated method. 
The reliability estimates thus includes partial volume effects (resulting 
from sub-voxel variability in subject positioning and variability in 
tissue vs. voxel boundaries). Each study consisted of two 0.7 mm3 T1 
motion-corrected studies, one 1 mm3 T1 motion-corrected study, and 
one 1 mm3 T1 non-motion corrected study. Table 1 shows intraclass 
correlations (ICC) and dice overlap scores between CATK2 and the 
manual labelings for major cerebellar groupings. Owing to the small 
number of labeled subjects and the requirements on sufficient data to 
generate a viable AAM, only leave-one-out evaluation was feasible.

Test-retest scores refer to ICC’s computed between repeat scans for 
each method (Manual or CATK2), while validity scores are computed 
comparing manual labelling to CATK2 results. Dice Overlap [58] 
measures the spatial overlap between two discrete segmentations 
by measuring the proportion of voxels that have the same label as a 
percentage of the total masked volume. (All validity comparisons are 
based on the set of 0.7 mm3 motion corrected images which were 
selected for manual labeling.) 

A similar comparison of reliability and validity for all 29 cerebellar 
parcels is shown in Table 2. Generally, CATK2 shows excellent 
repeatability when applied to multiple scans of the same subject as seen 
in the high test-retest scores, which are similar, and typically higher, 
than the scores for manual labeling. Dice overlap, which is calculated 
as the mean across both test and re-test scans, also indicates fairly 
consistent agreement with manual labelings. However, lower scores are 
seen in cases of smaller parcels, and especially where poor agreement is 
seen in the manual labels between test and re-test scans.

We also applied CATK2 to 37 unseen control and alcoholic subjects 
from the study (not used for training or validation) to assess reliability 
of the method on multiple image resolutions. Table 3 shows ICC scores 
computed between each subject’s initial and follow-up scan for 0.7 
mm3 motion-corrected, 1 mm3 motion-corrected, and 1 mm3 standard 
studies respectively. The first column shows the overall agreement 
across all image resolutions. This comparison shows that even though 
CATK2 was trained on high-resolution motion-corrected image, the 
models can be applied to standard resolution non motion-corrected 
image with no noticeable impact on reliability.

Application of CATK2 to prenatally alcohol exposed and 
control children

We previously applied the 5-parcel CATK to samples of prenatal 
alcohol exposed and control children [33], which revealed new 
findings relative to the effects of prenatal alcohol exposure on the brain. 
Subsequently, we have now applied CATK2 to the same data, which 
comprises two groups of children between 10 and 18 years of age: 13 
children with histories of heavy prenatal alcohol exposure (PAE group) 
and 9 non-exposed control children (NC group). Children were part 
of a larger study of the behavioral teratogenicity of alcohol. Inclusion 
required having English as the primary language, no history of head 
trauma, serious medical condition, or MRI contraindications.

Inclusion in the PAE group required documented heavy maternal 
alcohol consumption during pregnancy, defined as 4 or more alcoholic 
drinks per single occasion at least once per week, or 14 or more drinks 
per week on average. Whenever possible, exposure was confirmed 
using medical history, birth records, social services records, or maternal 
report. However, direct maternal report was not common as many of 
these children no longer resided with their biological families. Thus, 
precise details about alcohol consumption (i.e., dose and timing) 
were often unavailable. In these cases, mothers were reported to be 
alcoholic or alcohol abusing or dependent in pregnancy. In addition 
to psychometric testing and questionnaire screening, a diagnosis of 

GROUPING INTRACLASS CORRELATION DICE
  Test-Retest Reliability Validity Dice Overlap
  Manual CATK2 Manual vs. CATK2 Manual vs CATK2
Whole Cerebellum 0.9577 0.9772 0.8957 0.93
Left Hemisphere 0.9454 0.9696 0.8723 0.89
Right Hemisphere 0.9475 0.9724 0.8759 0.89
Vermis 0.914 0.9768 0.7976 0.83
Corpus Medullare 0.7386 0.8687 0.5052 0.85
Anterior Lobe (I-V) 0.9347 0.8014 0.5273 0.78
Superior Posterior Lobe (VI-VII) 0.8449 0.9636 0.7775 0.89
Inferior Posterior Lobe (VIII-IX) 0.6817 0.948 0.6473 0.85
Flocculonodular Lobe (X) 0.6398 0.8564 0.4071 0.6
Vermis I-V 0.8662 0.9645 0.7721 0.8
Vermis VI-VII 0.8208 0.9497 0.693 0.77
Vermis VIII-X 0.9454 0.9154 0.6544 0.79

Table 1. Comparison of CATK2 and Manual labelings for major cerebellar lobes
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  PARCEL INTRACLASS CORRELATION DICE
Test-Retest Reliability Validity Dice Overlap

Manual CATK2 Manual with CATK2 Manual vs CATK2
1 Left I-IV 0.7134 0.8892 0.3083 0.62
2 Right I-IV 0.7601 0.7816 0.2773 0.68
3 Left V 0.5810 0.5209 0.2102 0.62
4 Right V 0.7886 0.6810 0.2509 0.65
5 Left VI 0.8497 0.8491 0.4206 0.78
6 Right VI 0.9558 0.9038 0.5905 0.78
7 Left CrusI 0.5812 0.9447 0.5348 0.82
8 Right CrusI 0.9423 0.9207 0.7812 0.82
9 Left CrusII 0.2432 0.7836 0.3892 0.77
10 Right CrusII 0.4416 0.9156 0.4125 0.77
11 Left VIIb 0.5614 0.5923 0.2850 0.57
12 Right VIIb 0.8506 0.8678 0.5160 0.65
13 Left VIIIa 0.4923 0.7749 0.3195 0.60
14 Right VIIIa 0.6903 0.9706 0.4845 0.70
15 Left VIIIb 0.3068 0.6582 0.2458 0.69
16 Right VIIIb 0.2938 0.9301 0.3756 0.74
17 Left IX 0.9801 0.9209 0.7653 0.78
18 Right IX 0.9663 0.8693 0.6392 0.79
19 Left X 0.6585 0.8299 0.3829 0.57
20 Right X 0.5268 0.8097 0.4132 0.59
21 Vermis I-IV 0.8300 0.8757 0.6838 0.81
22 Vermis V 0.7208 0.6856 0.5205 0.72
23 Vermis VI 0.7271 0.9128 0.7295 0.73
24 Vermis VIIcab 0.6394 0.8187 0.4759 0.69
25 Vermis VIIIab 0.8921 0.8786 0.5844 0.77
26 Vermis IX 0.8334 0.8018 0.5933 0.76
27 Vermis X 0.7612 0.8882 0.5585 0.66
28 Right Corpus Medullare 0.7252 0.8660 0.5000 0.86
29 Left Corpus Medullare 0.7471 0.8626 0.5029 0.85

Table 2. Comparison of CATK2 and Manual labelings for each parcel

Figure 5.  Coronal and sagittal sections from two PAE and two controls, with CATK2 parcel labels showing good fidelity of the CATK2 fits

FAS was determined by Dr. Kenneth Lyons Jones, a dysmorphologist, 
using a standardized assessment [59,60]. FAS was diagnosed in the 
presence of structural abnormality (i.e., two or more of the following 
facial features: short palpebral fissure length, smooth philtrum, thin 
vermillion border) and either growth deficiency (height or weight 
is < 10th normative percentile) or microcephaly (occipital–frontal 
circumference is < 10th normative percentile). 

Based on this screening process, 6 alcohol-exposed children 
received a diagnosis of FAS. 

Children in the NC group were excluded if greater than minimal 
prenatal alcohol exposure was reported. Figure 5 shows coronal and 
sagittal sections from two PAE and two control subjects, with CATK2 
parcel labels, illustrating the qualitatively good fits. 

Figure 6 shows the comparison between PAE and control 
adolescents for each of the CATK2 parcels with significant results 
indicated in green. For the hemispheres it shows lower cerebellar 
volumes. We found lower volumes for PAE vs. controls for left and right 
corpus medullare, CrusI and VIIb and for left VI, with a trend in the 
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  PARCEL INTRACLASS CORRELATION CATK2 Visit1 vs Visit2
 

ALL 0.7mm3 MOCO 1mm3 MOCO 1mm3

1  Left I-IV 0.9277 0.9069 0.9617 0.9708
2  Right I-IV 0.9544 0.9619 0.9716 0.9743
3  Left V 0.9480 0.9368 0.9740 0.9707
4  Right V 0.9375 0.9171 0.9721 0.9426
5  Left VI 0.9453 0.9223 0.9560 0.9587
6  Right VI 0.9575 0.9295 0.9599 0.9657
7  Left CrusI 0.9549 0.9392 0.9637 0.9776
8  Right CrusI 0.9624 0.9394 0.9692 0.9737
9  Left CrusII 0.9505 0.9368 0.9760 0.9530
10  Right CrusII 0.9587 0.9655 0.9697 0.9541
11  Left VIIb 0.9122 0.8688 0.9411 0.9132
12  Right VIIb 0.9345 0.9347 0.9423 0.9448
13  Left VIIIa 0.9260 0.8865 0.9295 0.9390
14  Right VIIIa 0.9639 0.9463 0.9695 0.9692
15  Left VIIIb 0.9002 0.8395 0.8824 0.9228
16  Right VIIIb 0.9483 0.9085 0.9558 0.9755
17  Left IX 0.9607 0.9523 0.9783 0.9689
18  Right IX 0.9662 0.9621 0.9775 0.9734
19  Left X 0.9111 0.8818 0.9190 0.9056
20  Right X 0.9227 0.9317 0.9503 0.9367
21  Vermis I-IV 0.9470 0.9656 0.9683 0.9785
22  Vermis V 0.9166 0.9431 0.9526 0.9604
23  Vermis VI 0.9642 0.9470 0.9802 0.9745
24  Vermis VIIcab 0.9053 0.8637 0.9197 0.9423
25  Vermis VIIIab 0.9439 0.9544 0.9708 0.9604
26  Vermis IX 0.9339 0.9455 0.9525 0.9510
27  Vermis X 0.9012 0.9283 0.9423 0.9520
28  Right Corpus Medullare 0.9572 0.9480 0.9578 0.9640
29  Left Corpus Medullare 0.9581 0.9524 0.9602 0.9663

Table 3. CATK2 reliability for first and follow up visits applied to different image resolutions

Figure 6. Comparison of CATK2 measures on 9 controls and 11 subjects with PAE

same direction for right VI. For the vermis, PAE had lower volumes for 
lobe V, with trends for reduced volumes for VIIIab and I-IV. The results 
provide insightful findings regarding the particulars of cerebellum 
involvement in the consequences of prenatal alcohol use and abuse and 
the behavioral phenomena seen in children with PAE.

Discussion
Since CATK2 models learn intrinsic features from manual labels, 

its reliability and validity is by definition limited by the reliability of 
the hand delineation of the cerebellar parcels. The reliability of the 
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measure is essentially a ratio of the average variability within subjects 
of the estimates to the variability of the true measures across subjects 
on whom the assessment of reliability is performed. For example, 
where the reliability assessment performed on a group that included 
individuals with known cerebellar anomalies, the reliability would 
have been greater. This might have been related to the power of 
CATK2 to separate the PAE from normal children given the known 
differences between the groups, hence the larger denominator of the 
reliability ratio. The PAE results presented here are interesting in that 
the cerebellar segmentations show where in the cerebellar vermis and 
hemispheres the PAE effects are present. Reduced cerebellar volumes 
in PAE children are evident in regions involved in i-RISA component 
functions. Additionally, we show that the lower volume in the anterior 
superior vermis is specific to lobule V, and that PAE show reduced 
bilateral corpus medullare volumes. This may be associated with such 
children showing difficulty with executive control functions. However, 
the import of these results is tempered by the small sample sizes studied 
and the fact that actual alcohol use in the PAE sample was not studied.

Conclusion
We have presented a 29-parcel automated cerebellar segmentation 

algorithm (CATK2) based on hierarchical Bayesian Active Appearance 
Models. CATK2 was trained on 38 0.7 mm3 motion-corrected T1-
weighted images that were manually labelled by Neuromorphometrics, 
Inc. 

The method performs an image registration between the image 
under consideration and template images, followed by the application 
of a hierarchical series of appearance models, and finally applies post-
processing to generate voxel-wise label map of the underlying cerebellar 
lobules. The use of multiple pre-registration frameworks is possible: 
CATK2 uses 3D-SIFT and RANSAC for multi-template alignment, and 
also an alternative pipeline using ANTS for pre-alignment, which can 
be used for lower-resolution images that do not produce sufficient SIFT 
features.

Owing to the small number of unique subjects in the training data, 
leave-one-out validation was selected as the evaluation technique for 
assessing reliability and validity. CATK2 shows excellent repeatability 
in terms of test re-test ICC computed across multiple studies of the 
same subject. Promising results are also seen in the overall agreement 
between CATK2 and the manual labeled data in terms of dice overlap 
comparison. However, lower scores in ICC validity comparisons are 
seen due to the small volumes intrinsic to the use of a very detailed 
parcellation protocol. In addition, this is partially due to the lower 
agreement between the test re-test scans of the manual labelings 
which are used for training. Comparison of CATK2 ICCs for several 
image resolutions negligible loss of CATK2 test-retest reliability when 
applying CATK2 high-resolution models to standard resolution non 
motion-corrected data. Finally, when applied to samples of prenatal 
alcohol exposed and control children, CATK2 provided more precise 
analysis of where within the cerebellar the effects of prenatal alcohol 
exposure are evident [33].
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