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Abstract
Bovine papillomavirus (BPV) is the etiological agent of bovine papillomatosis (BP), infectious disease, characterized by the presence of multiples papillomas that 
can regress spontaneously or progress to malignances. Although recognized as mutagen, BPV action following cancer initiation remains few explored, since studies 
about cancer progression and metastasis are based on cell cultures. The lack of attention to in vitro models is a reflection of the papillomavirus replication paradigm, 
which is dependent of epithelium cell differentiation.  Since 2008, we have explored the potential of cell lines derived from BPV-infected neoplasms as model to 
study the oncogenic process. In this study, we described BPV productive infection in cell lines derived from cutaneous papilloma, fibropapilloma and esophageal 
carcinoma (EC) in which BPV DNA sequences were previously detected by PCR. Considering that the immunodetection of L1 capsid protein is the main evidence 
of productive infection, we analyzed the expression of this protein by immunofluorescence and flow cytometry. Results showed the immunodetection of L1 protein in 
cell lines derived from cutaneous papilloma, fibropapilloma and EC, but not in cells derived from BPV-free normal skin. We also observed the presence of spherical 
and electron-dense particles, with 41.02-61.94 nm diameter in cytoplasmic vesicles of cells in the sixth passage of cutaneous papilloma, fibropapilloma and EC, being 
compatible with the expected BPV morphology. Cells derived from BPV-free normal skin, in turn, showed membranous particles up to 75.00 nm not compatible 
with BPV morphology. These results suggest the BPV productive infection in cells lines derived from BPV-infected neoplasm, reinforcing that these cells are useful 
models to study the viral biology and pathogenesis. 
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Highlights
•	 Bovine papillomavirus (BPV) cause multiples papillomas that 

can regress or progress to malignances;

•	 BPV action following cancer initiation remains few explored;

•	 Identification of BPV L1 capsid protein and virion-like 
particles in cytoplasmic vesicles of cell lines derived from BPV-
infected cutaneous papilloma, fibropapilloma and esophageal 
carcinoma;

•	 Cell lines derived from BPV-infected neoplasm can be 
considered useful model to study the viral biology and 
pathology.

Introduction
Bovine papillomavirus (BPV) is the etiological agent of bovine 

papillomatosis (BP), infectious and neoplastic disease characterized by 
the presence of multiples papillomas that can regress spontaneously 
or progress to malignance in the presence of co-factors [1-8]. BPV is 
a cosmopolitan virus, being present in all continents [1,9], leading to 
important economic loses worldwide [10]. About 60% of Brazilian 
cattle herd are infected by BPV [2]. However, this percentage can be 
greater, since the virus can lead to asymptomatic infections [11,12].

Currently there are 15 BPV types described, which are 
classified in four genres: Deltapapillomavirus (BPV-1, 2, 13 and 14), 

Epsilonpapillomavirus (BPV-5 and 8), Xipapillomavirus (BPV-3, 4, 6, 
9, 10, 11, 12 and 15)  and Dyoxipapillomavirus (BPV-7) [13–15].The 
Xipapillomavirus infects epidermis, causing true papillomas, while 
Delta and Epsilonpapillomavirus (BPV-5) can infect both epidermis 
and dermis, resulting in fibropapillomas  [16–18]. Although the 
papillomaviruses (PVs) are recognized as specie-specific, BPV is able to 
infect felines [19], buffaloes [20–22], giraffe [23,24], tapirs [25], zebra 
[26], yaks [27,28] and horses [29–31]. In equines, BPV is the causative 
agent of sarcoid, invasiveness but non-metastatic fibroblastic benign 
neoplasm [32] that affects 11.5% of horses worldwide [33]. Due to 
the ability to infect different species and in function of morphological 
and pathogenic similarities with human papillomavirus (HPV), BPV 
is considered a useful model to study the HPV-associated oncogenic 
process [8,34–36].

Although recognized as oncogenic viruses by induce mutation 
[2,11,37–40] and transformation [41–43], the action of BPV following 
cancer initiation remains unclear [36]. The reason for this is the 
absence of in vitro virus replication and, therefore, the lack of models 
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based on cell culture systems [44], which are mandatory to study the 
BPV action in cancer progression and metastasis [36]. This occur 
because, according to the BPV natural history, the viral replication is 
dependent of cell differentiation [45–47]. Considering the paradigm of 
PVs replication cycle, the expression of capsid proteins (L1 and L2) 
and viral assembly are only verified in most differentiated epithelium 
layers (hypergranulous) [48–50]. Due to this paradigm, little attention 
has been given to the primary cultures derived from BPV-infected 
tissues as model to study the pathogenic mechanism of PVs. However, 
in last decades, studies have described the presence of BPV DNA 
sequences, transcripts, proteins and virus-like particles in sites before 
not recognized as permissive to productive infection due to the 
absence of cell differentiation, including peripheral blood [51,52] and 
placenta [53]. Similar results have been also described in humans, in 
which sequences of HPV were verified in blood and semen [54,55]. 
In addition, Cerqueira et al. [47] currently demonstrated the cell-free 
assembly HPV-16 capsid. These results indicate the need to review the 
PVs natural history, as proposed by Munday [34].

The in vitro models, based on cell culture systems, have been 
extensively employed to study the oncogenic potential of PVs 
oncoproteins (E5, E6 and E7) or evaluate the interaction of virus with 
host cell, as showed in table 1. Results of these studies demonstrate 
that these systems mimetic several phenotypes observed in vivo (table 
2), reinforcing the potential of these cell cultures as useful models to 
study the pathogenic mechanism of PVs. In this sense, since 2008, 
our group has demonstrated the potential of cell lines derived from 
BPV-infected neoplasm as model to study the cytogenetic [40,56] 
and biochemical alterations induced by BPV [36,57]. Currently, we 
reported the maintenance of BPV DNA sequences during six passages 
of cell lines derived from cutaneous papilloma, fibropapilloma and 
esophageal carcinoma, suggesting an in vitro productive infection [57]. 
We also verified that these cells lines present a stem-cell and migratory 
biomarker phenotype acquisition, suggesting that in vitro systems are 
useful models to study the metastasis [58]. Despite these data, cell 
lines derived from BPV-infected cutaneous papilloma, fibropapilloma 
and esophageal carcinoma remains considered as non-permissive to 
productive infection. Based on this, we investigated the expression of 
BPV L1 capsid protein and the presence of virus particle by electron 
transmission microscopy in order to evaluate a possible productive 
infection in in vitro systems. 

Material and methods
Ethics statement 

This study was approved by the Ethic Committee on Animal Use of 
São Paulo Federal University (UNIFESP, process 1829/09).

Primary cell culture establishment 

Three samples of skin papilloma were collected from three adult 
bovines showing bovine papillomatosis (Bos taurus, Simmental breed). 
One fragment of normal skin, without morphological alteration, 
was collected from 8 mouths aged. Samples of cutaneous papilloma, 
fibropapilloma and esophageal carcinoma were collected from adults 
presenting clinical symptoms of esophageal carcinoma. Tissue samples 
were collected by a veterinarian. Samples were washed in PBS with 2% 
amphotericin B and 3% penicillin/streptomycin (Cultilab, Brazil) and 
transported to Genetics Laboratory of Butantan Institute in Dulbecco 
medium (DMEM), supplemented with 2% amphotericin B and 3% 
penicillin/streptomycin (Cultilab, Brazil).

Each sample was divided in three fragments, which were destined 
to: (1) primary cell culture establishment, (2) BPV molecular 
identification and (3) histopathological analysis. For primary cell culture 
establishment, the tissue was fragmented mechanically, using a sterile 
scalpel, which were washed three times PBS with 2% amphotericin B 
and 3% penicillin/streptomycin. Tissue fragments were treated with 
0.01% collagenase (Sigma, Germany) at 37ºC for 15 minutes. The 
enzymatic product digestion was transferred to three culture flasks 
of 25 cm2, containing 5 mL of DMEM medium supplemented with 
10% of fetal bovine serum (FBS) and 1% of penicillin/streptomycin 
(complete medium) at 37ºC. Culture flasks were incubated at 37ºC, 
with 5% CO2 atmosphere until a confluence of 80%. From this step, 
cells were treated with trypsin solution and expanded in culture flasks. 
One culture flask of each cell lineage obtained was cryopreserved in 

Cell type Results Reference
Pancreatic keratinocyte HPV-16 E6/E7 promotes cell immortalization [70]
Ectocervix keratinocyte HPV-16 E6/E7 promote cell immortalization [71]
Normal foreskin 
keratinocyte E6 increases telomerase activity [72,73]

COS7 cells HPV-1 and 8 E6 interacts with E6AP (ubiquitin) 
and p53 [74]

Normal foreskin 
keratinocyte

HPV-16 E6 promotes epithelium stratification 
reduction [75]

Immortalized 
keratinocyte Evidences of HPV-16 productive infection [76]

Murine C127 cells HPV-16 and BPV-1 E6 promotes focal adhesion 
decrease [77-79]

Wart and squamous 
carcinoma

HPV E6 inhibits apoptosis in response to UV 
damage [80]

Normal foreskin 
keratinocyte HPV-16 E6/E7 induce cytogenetic aberration [81,82]

Chondrocyte HPV-16 E6/E7 promotes immortalization and 
collagen type II expression [83]

Normal foreskin 
keratinocyte

HPV-16 E6 induces p53 degradation and p53 and 
hTERT expression, increasing telomerase activity [84]

Normal foreskin 
keratinocyte

HPV-16 E6/E7 induce irreversible epitelial-
mesenchymal transition [85]

Cervical keratinocyte HPV-16 E5 interacts with endoplasmic reticulum 
membrane [86]

Normal foreskin 
keratinocyte

HPV-16 E6/E7 promote epigenetic alterations in 
host cell [87]

Normal foreskin 
keratinocyte HPV-16 E1^E4 induce keratin reorganization [88]

Normal foreskin 
keratinocyte BPV-1 E2 stimulates cell migration [89]

Keratinocyte (PM1) HPV-8 E2, E6 e E7 promote the stem-cell 
phenotype acquisition [90]

HEK293 cells Domain PDZ da E6 induces PKAand AKT 
phosphorylation [91]

U2OS cells E2 binds to Brd4 regulating DNA replication [92]

Table 1. Summary of studies involving cell lines and papillomavirus. Studies based on 
BPV/HPV gene transfection.

Cell type Results References

Keratinocyte
Viral suspension addition in bovine 
epithelium cells promotes cell 
transformation and acidification

[93]

Papilloma and fibropapilloma
Verified cytogenetic aberration in 
chromosomes 8 and 14 of BPV1.69 
transgenic mouse-derived papilloma

[94]

Papilloma, fibropapilloma, 
urinary bladder and esophageal 
carcinoma

Establishment of cell lines and 
identification of BPV [56]

Cytogenetic aberration [40]
Papilloma Primary culture establishment [95]

Table 2. Summary of studies involving cell lines and papillomavirus. Studies based on 
BPV-infected cell lines.



Araldi RP (2017) Bovine papillomavirus productive infection in cell cultures: First evidences

 Volume 1(2): 3-9Virol Res Rev, 2017         doi: 10.15761/VRR.1000110

freezing medium (70% DMEM, 10% dymethylsulphoxyde and 20% 
FBS) and stocked at -196ºC. These cell lines are part of biological 
collection of Genetics Laboratory. Cell employed in this study were 
cultivated until sixth passage (P1-P6) and subjected to morphological 
analysis by phase contrast using the Nikon Eclipse Ti (Nikon, Japan) 
inverted microscopy. Images were acquired using the NIS-Elements Br 
version 3.0 (Nikon, Japan) in total magnification of 100 and 200X. The 
molecular identification of BPV DNA sequences were performed by 
PCR using specific primers for BPV-1, 2 and 4, the most frequent virus 
types verified globally. PCR results are available in Araldi, et al. [57].

Analysis of viral proteins
Immunofluorescence 

A total of 1 × 105 cells were seeded per well, employing a six-well 
plate, containing 2 mL of complete DMEM medium and using a 24 × 
24 mm sterile cover slip. Cells were incubated at 37ºC, with 5% CO2 
atmosphere, until a confluency of 80% (about 24 hours). The medium 
was removed and cells were washed three times with sterile PBS for 5 
minutes. Cells were fixated with 4.0% formalin, diluted in PBS, at 4ºC 
for 30 minutes and then washed three times with PBS for 5 minutes. 
Cells were permeabilized with 0.01% Triton X-100 (Sigma, Germany), 
diluted in PBS, at 4ºC for 10 minutes. Cells were washed once with 
PBS and incubated overnight at 4ºC with anti-L1 [BPV-1/1H8 + 
CAMVIR] (Abcam, Cambridge, UK) at a 1:100 dilution in 1% of BSA. 
Cells were washed three times with PBS under described conditions 
and then incubated at 4ºC for 3 hours with anti-mouse IgG-FITC 
(Sigma, Germany), at dilution of 1:100 in 1.0% of BSA. A cutaneous 
papilloma 01 cell line, incubated only with secondary antibody, was 
used as negative control. Cells were washed three times with PBS and 
cover slips were mounted on slides, using 20 μL of ProLong Gold 
(Invitrogen, Carlsbad, USA) with DAPI. Slides were analyzed in Axio 
Scope A1 fluorescent microscope (Carls Zeiss, Germany) under total 
magnification of 400X. This analysis was performed in third passage (P3).

Flow cytometry

Cell lines were seeded in culture flasks of 25 cm2 with 5.0 mL 
of complete DMEM medium. Cells were subjected to monolayer 
disaggregation with 2 mL of Trypsin solution, centrifuged at 400 x g 
for 5 minutes.  Cells were transferred to 1.5 mL polypropylene tubes 
and fixed in 1.0 mL of 1.0% formalin solution at 4ºC for 2 hours. The 
material was centrifuged under described conditions, and washed twice 
with 1.0 mL of PBS at 4ºC to remove the formalin residues. Cell were 
incubated with 1.0% BSA at 4ºC for 20 minutes, washed once with PBS, 
and incubated overnight at 4ºC with primary antibodies showed in table 
3. Cells were centrifuged under described conditions and washed twice 
with PBS at 4ºC. The material was incubated at 4ºC for 2 hours with 
anti-mouse IgG1 conjugated with Alexa Fluor 488 secondary antibody 
(Invitrogen, Carlsbad, USA) at 1:200 dilution. Next, cells were washed 
with PBS, centrifuged under described conditions, and resuspended 
in 100 μL of PBS. The material was analyzed in FACSCalibur (BD 
Bioscience, USA), employing the CellQuest software (BD Bioscience, 
USA). A total of 10,000 events were analyzed using the FlowJo software 
(TreeStar, Oregon, USA). Analysis were based on the percentage of 
immunostained cells. Cutaneous papilloma 01 cell line incubated with 
only secondary antibody was used as control. Analysis were performed 
in third passage (P3).

Electron microscopy (EM)

Cell lines were seeded in a six-well plate, containing a sterile cover 
slip/well, with 2 mL of complete medium until forming a confluence 

of 80–90%. Medium was removed by aspiration and cells were fixated 
with 2.5% glutaraldehyde buffer for one hour at 4ºC. The material 
was washed five times with cacodylate buffer for two minutes/wash. 
Cells were incubated with 1% osmium tetroxide (OsO4), diluted in 
0.1 M cacodylate buffer, containing 3 mM CaCl2 and 0.8% potassium 
ferrocyanide, for 30 minutes at 4ºC. The material was washed five times 
with ultrapure water and, later, contrasted with 2% uranyl acetate for 
1 hour at room temperature. Cells were washed with ultrapure water 
and dehydrated with increasing concentrations of alcohol (20%, 50%, 
70%, 80%, 90%, and 100%) at 4ºC for three minutes. The material was 
subjected to additional dehydration with absolute ethanol at room 
temperature for three minutes. Cells were embedded in 1:1 solution 
of Epon-ethanol, under agitation, for 30 minutes at room temperature. 
We performed four complete exchanges of Epon resin with intervals 
of one hour except for an overnight interval, which was the last one. 
The material was transferred to 60ºC for 72 hours, to polymerize the 
resin. Blocks were subjected to ultrafine cuts, which were analyzed in 
JEM-2100 transmission electron microscopy (JEOL Solution, USA). 
Morphometric analysis was performed using the AxioVision 4.9.1 
software (Carl Zeiss, Germany). This analysis was performed in sixth 
passage (P6) to confirm the presence of virus particles. Morphometric 
analysis was performed using the AxioVision version 4.1.9.0 software 
(Carl Zeiss, Germany). Statistical analysis was performed based on 
medium diameter of electron-dense spherical particles detected by EM.

Results
Histopathological analysis of tissue fragments

Histopathological analysis of BPV-free normal skin, used as 
control, showed the absence of morphological alterations, presenting 
both epidermis and dermis preserved (Figure 1). Cutaneous 
papilloma and fibropapilloma samples showed morphological 
alterations in epidermis compatible to those verified in BPV infection: 
hyperkeratosis, koilocytosis, acanthosis and hypergranulosis (Figure 
1). Fibropapillomas showed a fibroelastic dermis, with extensive 
fibroblastic proliferation (Figure 1), which was not verified in 
cutaneous papilloma (Figure 1). Esophageal carcinoma sample showed 
a tissue disorganization, with the presence of mitotic and pleomorphic 
cells, presenting hydropic degereration in spinous layer (Figure 1). It 
was also observed the presence of transformed cell islands into dermis 
(Figure 1), characterizing an esophageal epidermoid carcinoma.

Morphological analysis of primary cell cultures

Results showed the presence of both epithelioid and fibroblastoid 
cells in primary cultures of BPV-free normal skin, skin papilloma, 

Cell type Results References
Laryngeal keratinocyte HPV promotes tight junction reduction [96]

Cervical carcinoma Identification of HPV-16 and 18 by in situ 
hybridization [97]

Skin squamous 
carcinoma HPV-16 promotes in vitrodifferentiation [98]

Laryngeal carcinoma
Addition of retinoic acid reduces the viral 
DNA content and modulates the epithelium 
differentiation

[99]

Cervical carcinoma HPV promotes ATP-dependent Cl- channel 
activation, increasing the cellular volume [100]

HeLa, CaSki and 
cervical carcinoma HPV-16 E6 promotes VEGF upregulation [101]

HeLa and SiHa Viral replication induces genomic instability [102,103]
Oropharyngeal 
squamous carcinoma

- HPV-16 E6 promotes β-catenin nuclear 
translocation [104]

Table 3. Summary of studies involving cell lines and papillomavirus. Studies based on 
HPV-infected cell lines.
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Figure 1. Photomicrographs of histological cuts and phase contrast f cell lines derived from different tissue fragments: A) BPV-free normal skin, B) cutaneous papilloma (papilloma 01), C) 
fibropapilloma (papilloma 02), D) fibropapilloma (papilloma 03) and E) esophageal carcinoma. Histopathology analysis shows tissue preservation of BPV-free normal skin. Tissue fragments 
of both cutaneous papilloma and fibropapilloma showed acanthosis, parakeratotic and orthokeratotic hyperkeratosis and hyperkeratosis. Fibropapillomas show a fibroelastic stroma, with 
high fibroblastic proliferation. Analysis shows tissue disorganization in esophageal carcinoma tissue. Morphological analysis shows the preservation of apical-basal polarity of BPV-free 
normal skin cells. By the opposite, cells derived from cutaneous papilloma, fibropapilloma and esophageal carcinoma show the loss of polarity and the acquisition of fibroblastoid phenotype. 
Images obtained with total magnification of 50X. 

fibropapillomas and esophageal carcinoma (Figure 1). However, we 
verified the prevalence of fibroblstoid cells in primary culture of BPV-
infected tissues, but not in normal skin (Figure 1). 

Analysis of BPV L1 protein expression

We verified the expression of L1 proteins in primary cell cultures 
of cutaneous papilloma (papilloma 01), fibropapilloma (papilloma 02 
and 03) and esophageal carcinoma, but not in BPV-free normal skin 
cells (Figure 2). Results of immunofluorescence showed the nuclear 
and cytoplasmic labelling of BPV L1 capsid protein (Figure 2). These 
results were confirmed by flow cytometry, which showed high levels of 
L1 expression specially in cell lines derived from cutaneous papilloma 
(papilloma 01), fibropapilloma (papilloma 02 and 03) and esophageal 
carcinoma (Figure 2). Negative controls of both immunofluorescence 
and flow cytometry showed the absence of labelling (Figure 2).

Identification of BPV-like particles in primary cell cultures

Results of electron microscopy showed the presence of electron-
dense spherical structures with 41.02-61.94 nm and icosahedral 
morphology, present in cytoplasmic vesicles of cutaneous papilloma, 
fibropapillomas and esophageal carcinoma cells (Figures 3), but not 
in BPV-free normal skin cells (Figures 4 and 5). These structures are 
compatible with the expected morphology of BPV particles [51,59].

Discussion
Since 2008, our group have explored the potential of both primary 

cell cultures and cell lines derived from primary cell cultures of BPV-
infected benign and malignant neoplasms as model to study both 
natural history and pathogenic mechanism of BPVs [56–58]. In 2013, 
we described the presence of cytogenetic aberrations in primary cell 
cultures derived from BPV-infected cutaneous, urinary bladder and 

esophageal papilloma [40] similar to those verified in lymphocyte short-
term culture of BPV-infected animals [2,39]. Cytogenetic damages 
was also detected in primary cell cultures derived from BPV-infected 
bovine, equine and canine papillomas [60]. Using cell lines derived from 
primary cultures of BPV-infected cutaneous papilloma, fibropapilloma 
and esophageal carcinoma, the same cell lines employed in this study, we 
showed that virus infection promotes metabolic deregulation, leading 
to oxidative stress as a consequence of pro-oxidant action of BPV-1 
E6 oncoprotein [57]. Currently, we also verified that cell lines derived 
from BPV-infected neoplasms acquire a stem-cell-like and migratory 
biomarker phenotype acquisition [58]. Despite these data show the 
potential of BPV-infected cell lines and/or primary cultures as model 
to study the viral biology and pathology, especially on oncogenesis, up 
to date the in vitro systems remains considered as not able to develop a 
productive infection. This is a reflection of viral replication paradigm, 
which states that the BPV replication is dependent of epithelial cell 
differentiation, since the expression of capsid proteins (L1 and L2) is 
restrict to the most differentiated epithelium layers [8,61].

However, in last years it was verified that presence of BPV DNA 
sequences in different sites not passive of cell differentiation, including 
urine, spermatozoa [62], blood [2,11,39,63–65] and placenta [53]. 
Considering that the L1 protein expression is verified in sites of viral 
assembly, once this protein is able to self-organize in pentameric 
structures that composes the BPV capsid [66], L1 immunodetection is 
pointed out as the main evidence of productive infection [51,67]. Based 
on BPV DNA sequences identification and L1 immunodetection, 
Roperto et al. [52] and Melo et al. [51] described the productive 
infection in lymphocytes and, later in placenta [53].

Considering that cell lines derived from BPV-infected neoplasm 
are able to mimetic the in vivo viral pathology, verified by the 
cytogenetic aberrations [40], DNA damages, metabolic deregulation 
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Figure 2. Immunodetection of L1 capsid protein by immunofluorescence and flow cytometry. A) Immunofluorescence analysis showing: absence of unspecific labeling in cells derived 
from cutaneous papilloma only incubated with the secondary antibody conjugated with FITC (control); absence of labeling and, therefore, L1 expression in BPV-free normal skin cells; 
cytoplasmic and nuclear immunodetection of L1 protein in cells derived from cutaneous papilloma (papilloma 01), fibropapilloma (papilloma 02 and 03) and esophageal carcinoma.  
Flow cytometry analysis showing absence of unspecific labeling in cells derived from cutaneous papilloma only incubated with the secondary antibody conjugated with Alexa Fluor 488 
(control), absence of L1 expression in normal skin cells; immunodetection of L1 protein in cells derived from cutaneous papilloma (papilloma 01), fibropapilloma (papilloma 02 and 03) 
and esophageal carcinoma. B) Cell percentage expressing L1 protein. C) Median of fluorescent intensity (MFI) of L1 expressing cells. Total of 10,000 events analyzed. Cells in third passage (P3). 
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Figure 3. Electron micrographs showing spherical and electron-dense particles observed in: A) cytoplasm of cutaneous papilloma cells (papilloma 01), cytoplasmic vesicles of fibropapillomas 
(B – papilloma 02 and C – papilloma 03) and D) esophageal carcinoma. Analysis performed in the sixth passage (P6).

Figure 4. Electron micrographs of BPV-free normal skin cells showing the absence of virion-like particles into the nucleus and the presence of membranous vesicles with diameter up to 
75.00 nm not compatible with BPV virion morphology. Analysis performed in the sixth passage (P6).

[57] and migratory phenotype acquisition [58] in this study we 
investigated the L1 expression and the presence of BPV particles in cell 
lines derived from BPV-infected cutaneous papilloma, fibropapilloma 
and esophageal carcinoma, in which we previous described the 
maintenance of DNA sequences of BPV-1, 2 and 4 [57].  We detected 
the nuclear and cytoplasmic labelling of L1 protein in cutaneous 
papilloma, fibropapilloma and esophageal carcinoma cells, but not in 
BPV-free normal skin cells (Figure 2). These results were confirmed by 
flow cytometry (Figure 2), suggesting the in vitro viral assembly. This 
because, considering the nature obtaining maximum effect for lower 
energy cost, it will not expect the L1 expression in primary cell cultures 
if there was not viral assembly.

Once the viruses are smaller than their host, the electron microscopy 
(EM) is recognized as the best method to identify BPV particles [59], 
since this technique allows to analyze the ultrastructure with high 
resolution [68]. However, with the advent of molecular biology, the 
PCR became the most used method to viral identification. But, the PCR 
does not allow to identify viral particles, making the EM a mandatory 
method to demonstrate the productive infection. Based on these data, 
the different cell lines, in the sixth passage (P6), were subjected to EM 
analysis. Under EM, BPV virions are visualized as non-enveloped 
isometric particles, with electron-dense spherical morphology and a 
diameter of 45-60 nm [51,59,69].
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EM results showed the presence of electron-dense spherical 
structures, with isometric morphology and a diameter among 41.02 to 
60.94 nm, compatible with BPV particles (Figure 3). These structures 
were observed in cytoplasmic vesicles of primary cell cultures derived 
from cutaneous papilloma, fibropapillom and esophageal carcinoma 
(Figure 3). BPV-free normal skin cells showed the presence of spherical 
structures, disperse in cytoplasm, with envelope and diameter higher to 
75.0 nm (Figures 4 and 5), being non-compatible with BPV particles. 
These results are strong evidences of productive infection in primary 
cells cultures.

BPV viral assembly in cultures cells are plausible, once different 
of HPV, BPV does not integrate with host genome, being verified in 
episomal form. Thus, the virus remains its complete genome, being 
able to codify all proteins, including L proteins, responsible for the 
viral assembly. In conclusion, our data suggest for the first time the 
BPV productive infection in vitro. These results indicate that primary 
cell cultures derived from BPV-infected lesion can be useful models to 
study the oncogenic mechanism of these viruses.
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