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Armenian transformation equations in 3D
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Abstract

In this article, we derive new transformation equations of relativity in 3D using the following guidelines:

1. We use only vector notations to obtain the new transformation equations in a general form.

- -

2. In the process of deriving new transformation equations in vector form, we also keep the term VX 7

3. Newly obtained transformation equations need to satisfy the linear transformation fundamental laws.

4. Addition of velocities we calculate in two different ways: by linear superposition and by differentiation, and they need to coincide each other.
If not, then we force them to match for obtaining the final relation between coeflicients. After using the above mentioned general guidelines, we obtain direct and
inverse transformation equations named the Armenian transformation equations, which are the replacement for the Lorentz transformation equations.

Introduction to the Armenian transformation

equations in 3D

The Lorentz transformation equations, as we know them, in two
dimensional time-space (tx) or in four-dimensional time-space
(t,r), when the inertial systems move at a constant relative velocity v
along one of the chosen axis, are linear orthogonal transformations.
In these cases Lorentz transformations are a group and satisfy the
fundamental linear transformation rules: L(v)L(x)= L(u). Where the
resultant transformation is a Lorentz transformation as well with the

u=(v+u)/(1+ \;uT) :

In general, when the relative resultant velocity velocity of the
inertial systems S and S have an arbitrary direction, then the Lorentz
transformation is not a group and are therefore less discussed as a
case. Only a few brave authors mention and discuss this general case
(axes of the inertial systems they take parallel to each other as usual).
The main linear transformation law fails for the general Lorentz
transformation. Since, however, a resultant transformation must be a
Lorentz transformation as well, physicist need therefore to add an extra
artificial transformation called the Thomas precession, to compensate
for the error. This is the Achilles heel in the Lorentz transformation
equations in 3D and more precisely in all special and general theory of
relativity. Therefore it is an imperative, that the Lorentz transformation
equations be replaced by new ones, which must be consistent with linear
transformation fundamental laws and have a common sense in respect to
reality. Here we shall derive these New transformation equations, using
pure mathematical logic without any limitations and the following
three postulates:

1. All physical laws have the same mathematical(tensor) form in all
inertial systems.

2. There exists a boundary velocity, denoted as ¢, between micro
and macro worlds, which is the same in all inertial systems.

3. The simplest transformation equations of the moving particle
between two inertial systems have only when relative velocity, measured
in two inertial systems, satisfy the reciprocal relation
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These first two postulates are almost the same as the Special
Relativity Theory postulates, but the third postulate is quite new and
necessary for receiving the simplest transformation equations without
ambiguity problems in orientation of the inertial systems axes.

All authors that I know, derive the Lorentz transformation
equations using two Cartesian coordinates (f, x) or as a general way
using four Cartesian coordinates (¢, x, y, z). Nobody (that I know
of) uses vector notations to derive general transformation equations
for relativity. Many authors artificially construct 3D Lorentz
transformation equations in vector form using one dimensional
Lorentz transformation equations and therefore those generalized
results cannot be correct. The laws of logic tell us, that we need to go
from the general case to the special case. That’s why we derive our
new transformation equations using the most general considerations
and adapting vector notation. The great merit of the vectors in the
theoretical and applied problems is that equations describing physical
phenomena can be formulated without reference to any particular
coordinate system, without worry that coordinate systems axes are
parallel to each other or not. However, in actually carrying out the
calculations we need to find a suitable coordinate system (our third
postulate) where equations can have the simplest form. Therefore to
receive the correct transformation equations we need to use only vector
notations and focus on it entirely. Using this new promising approach
and one additional postulate we derive truly correct transformation
equations in the general and simplest form.

The other question can arise - why are we calling our newly received
transformation equations the Armenian Transformation Equations?
The answer is very simple. This research was done for more than 40
years in Armenia by an Armenian and the manuscripts were written in
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Armenian. This research is purely from the mind of an Armenian and
from the Holy land of Armenia, therefore we can rightfully call these
newly derived transformation equations the Armenian Transformation
Equations and the theory the Armenian Theory of Relativity or ATR.

Summary of the Armenian transformation equations
In 3D

Direct and Inverse Armenian transformation equations
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where coefficient sg is a real constant number characterizing the time-
space medium.
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